首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
现有研究大多从煤自燃单组分气体或部分组分混合气体角度对瓦斯爆炸极限进行分析,而对煤自燃过程中不同阶段产生的混合气体对瓦斯爆炸极限的影响分析不足,对煤自燃与瓦斯爆炸的耦合致灾开展的实验研究较少。针对上述问题,通过模拟煤自燃实验装置研究了煤自燃过程中气体生成特征规律;采用20L球形爆炸装置对瓦斯混合煤自燃各个阶段生成气体进行实验,研究了煤自燃气体对瓦斯爆炸下限的影响。实验结果表明,实验煤样自燃过程中产生的可燃性气体主要为CH_4,CO,C_2H_4,C_2H_6,C_2H_2等,其中CH_4和CO体积分数最高,最高体积分数分别为0.75%和0.37%;煤自燃不同阶段产生的可燃性气体含量随自燃时间的增加和温度的升高均呈现增大趋势,煤自燃加热初期,温度小于80℃主要产生了CH_4,CO可燃性气体,CO可以作为煤自燃缓慢氧化阶段的标志气体;随着自燃时间的持续,温度超过80℃后,开始产生C_2H_4和C_2H_6,随后逐渐产生C_3H_8气体,C_2H_4的出现表明煤氧化进入了加速阶段;煤氧化自燃后期,大约到220℃时出现C_2H_2,此时煤进入激烈氧化阶段;低体积分数的CO能抑制瓦斯爆炸,高体积分数CO能促进瓦斯爆炸,导致爆炸压力变大,爆炸下限降低;煤自燃过程中产生的混合气体增大了瓦斯爆炸压力,爆炸下限最大降低了0.55%,瓦斯爆炸的危险性变大。  相似文献   

2.
煤自然火灾严重威胁着煤炭工业的安全。为了遏制该类火灾的发生,煤自然火灾指标气体的预测预报功能越来越受到人们的重视。本文通过煤氧化反应生产气体的红外光谱实验,分析了同安煤矿4101综放面煤样在升温氧化过程中,在不同温度下煤氧化自燃产生气体的红外光谱图谱,确定了此煤样在氧化自燃过程中在不同温度下出现的标志性气体。建立了标志性气体的预报模型,研究分析了煤样氧化自燃生产的CO、CH_4和C_2H_4气体的浓度与温度的关系。结果表明,4101综放工作面实验煤样氧化自燃生成的气体产物有H_2O、CO_2、CO、CH_4和C_2H_4等5种,CH_4、CO和C_2H_43种气体的浓度随温度的升高有着不同的变化规律。对矿井自燃火灾的预测预报具有重要的指导意义。  相似文献   

3.
通过煤程序升温氧化实验对比分析了不同干空气流量、氧气浓度下复合气体指标的变化规律,实验结果表明:在不能确定干空气流量的情况下,应选取φ(O_2)/(φ(CO)+φ(CO_2))作为预测煤自燃的气体指标;煤温在100℃以下时,φ(O_2)/(φ(CO)+φ(CO_2))可作为预测煤自燃的气体指标;煤温超过100℃时,φ(C_2H_4)/φ(CH4)和φ(CO)/φ(CO_2)可作为预测煤自燃的气体指标;煤温超过160℃且氧气体积分数为5%左右时,φ(C_2H_4)/φ(CO)也可作为预测煤自燃的气体指标。  相似文献   

4.
针对利用惰性气体降低煤氧化性来解决煤自燃、复燃的问题,现有研究大多是对煤低温氧化过程及煤复燃过程进行相关实验,对惰性气体降温后煤二次氧化的自燃特性涉及较少。针对上述问题,以焦煤为例,通过低温氧化实验,探究不同温度氧化的焦煤经过CO2冷却二次氧化的自燃特性。采用GC-4000A程序升温装置对焦煤进行预氧化(预氧化温度分别设为70,110,150℃),并对分别通入CO2气体和干空气冷却至30℃后焦煤二次氧化过程中的耗氧速率、CO产生率、CO2浓度和表观活化能进行分析。实验结果表明:预氧化温度相同时,与干空气冷却相比,通入CO2冷却后的焦煤相关参数的变化规律基本一致,二次氧化初期,因预氧化焦煤吸附大量CO2,阻碍了煤与O2接触,耗氧速率和CO产生率减小,表观活化能增大,焦煤的氧化性减弱;随着CO2解析,CO2冷却也影响预氧化焦煤的后期反应,使得预氧化焦煤整个反应过程自燃危险性降低。预氧化温度不同时,70℃和110℃预氧...  相似文献   

5.
利用20L球形爆炸装置在不同煤尘浓度、粒径及点火能量条件下进行了煤尘二次爆炸实验,分析了煤尘浓度、粒径及点火能量对燃烧持续时间及残留气体的影响。结果表明:在相同条件下,煤尘二次爆炸燃烧持续时间大于一次爆炸燃烧持续时间;点火能量对二次爆炸燃烧持续时间的影响最大,煤尘粒径的影响最小;随着煤尘浓度的增大,二次爆炸燃烧持续时间先减小后增大;随着煤尘粒径减小或点火能量的增大,二次爆炸燃烧持续时间不断减小;对于相同条件下的同种气体,煤尘二次爆炸后残留气体体积分数均小于一次爆炸后;在一定范围内,随着煤尘粒径减小,二次爆炸后残留的CO体积分数不断减小,CO,CO_2体积分数的比值减小,CH_4体积分数增大;随着点火能量的增大,二次爆炸后残留的CO和CH_4体积分数均不断增大,CO,CO_2体积分数的比值呈增大趋势。  相似文献   

6.
王思栋  刘英忠  徐超 《工矿自动化》2020,46(4):34-37,45
为了从微观层面研究煤矸石自燃氧化特性,利用煤矸石自由基测定实验系统,分析了煤矸石自燃氧化过程中自由基变化规律.结果表明:随着温度的升高,自由基浓度先缓慢增加后快速增加,g因子先缓慢减小后快速增加再减小,CO生成量先缓慢增加后快速增加;含硫量越高,煤矸石由缓慢氧化达到快速氧化的临界温度及g因子快速增加所需的温度越低,CO生成量越大.可见含硫量对煤矸石自燃表现出促进作用,因此在煤矸石堆积之前应对煤矸石进行脱硫处理.  相似文献   

7.
针对目前对在模拟逐渐升温的采空区环境条件下不同变质程度煤自燃现象的研究较少的问题,以采集的4种变质程度的焦瘦煤、气肥煤、无烟煤、肥焦煤为例,利用煤自燃模拟系统进行了煤自燃实验,研究在采空区环境条件下煤的燃烧特征及自燃气体的产生规律。实验结果表明,焦瘦煤、气肥煤、无烟煤、肥焦煤自燃时,温度会呈现"S"型上升趋势,前期温度先缓慢积累,而后开始快速升温,最后在300℃时趋于平衡,而后缓慢上升;不同煤样在自燃过程中均会产生碳氢化合物和碳氧化合物等挥发性气体,且生成速率受温度影响,并出现极大值和极小值2个拐点;无烟煤温度上升曲线近似于直线,气体曲线随温度波动不明显;气肥煤和肥焦煤自燃时会产生大量CO和CH4,气肥煤产生CO的速率最快,CO最大体积分数可达8%,肥焦煤产生CH4的速率最快,CH4最大体积分数可达14%,焦瘦煤和无烟煤产生的CO和CO2的体积分数分别在2%和4%左右。  相似文献   

8.
超大采高工作面煤自燃监测数据包括气体浓度、温度等,研究方法包括实验、数值模拟、现场观测等。现有研究大多未考虑各指标之间的关系,研究手段及数据分析方法单一。针对该问题,以上湾煤矿采高为8.8m的12401工作面为例,通过煤自燃实验、现场"三带"实测及数值模拟相结合的方式,分析煤自燃火灾过程中气体浓度与温度之间的关联关系,总结采空区内因火灾发火规律和特征。建立地面钻孔注氮模型,反演了采取注氮措施前后O_2浓度场、CO浓度场、温度场和"三带"分布变化规律;针对高温异常区域,根据数值模拟结果选取注氮位置,采用地面与井下一起注氮的方式降低火灾危险性。研究结果表明:CO可作为预测煤自燃的指标气体,CO_2和CH_4不能作为指标气体,C_2H_6,C_2H_4,C_2H_2,H_2可作为辅助指标气体;采取注氮措施后,氧化升温带的宽度大大减小,CO体积分数明显降低,最高点温度迅速下降,惰化效果显著;高温异常区域CO体积分数及温度有逐渐下降的趋势,验证了注氮位置的合理性和注氮措施的有效性。  相似文献   

9.
针对采用理论分析及实验研究的方法研究高地温对采空区煤自燃的影响难以全面反映采空区煤自燃O_2浓度场分布情况的问题,采用Fluent数值模拟软件对高地温矿井采空区及进风侧、回风侧和采空区中段O_2浓度场分布规律进行了研究。结果表明:(1)在通风量相同情况下,温度从24.8℃升高到40℃时,O_2随着风流向整个采空区渗入,O_2浓度随采空区深度增加而减小;在温度相同情况下,当风量从1 800m3/min增大到2 700m3/min时,采空区漏风范围大幅度提升,采空区O_2浓度场变化明显,O_2几乎充满整个采空区,并且高浓度O_2存在范围增大,此时由于热量积聚导致采空区温度升高,采空区内部遗煤温度也持续增加,煤氧复合作用加快,遗煤自燃的可能性增大。(2)随着采空区距工作面距离增大,O_2浓度减小,进风侧O_2浓度大于回风侧O_2浓度,表明进风侧煤自燃危险性大于回风侧。(3)随着采空区深度增加,进风侧与采空区中段O_2体积分数持续减小,曲线斜率呈先增大后减小趋势;回风侧O_2体积分数随采空区深度增加呈减小趋势;大量高浓度O_2存在于采空区150m之前,整个采空区进风侧与采空区中段煤自燃危险性均大于回风侧。(4)当温度为40℃、通风量为2 700m3/min时,氧化带最大宽度为131m,将该最大宽度视为开采最大理论宽度,进一步计算安全推进速度,可为煤矿开采提供理论依据。  相似文献   

10.
通过建立单孔狭缝模型,采用非平衡分子动力学方法研究CH_4/CO_2二元气体混合物通过管状炭膜的传递和分离特性,考察了系统温度、气体组成和膜孔径对通量的影响。模拟过程中将膜低势,区压力取为更符合实际情况的非零值(大于零)。研究结果表明,在温度为20℃~160℃范围内,随温度升高,CH_4的通量增加,CO_2的通量则先降低后升高(80℃出现最低值);随混合气中CH_4组成的增加,CO_2通量下降、CH_4通量升高;随膜孔径增大,CH_4通量先增后减(9.77 (?)时出现最大值)、CO_2通量则呈下降趋势。以上模拟结果与实验数据相比较,吻合良好。在此基础上,本文还考察了跨膜压差对过程的影响,发现CH_4和CO_2的通量均随跨膜压差的增大而增大,膜的分离性能则随之降低。本研究结果充分表明,所建模型能够正确地描述CH_4/CO_2气体混合物的炭膜分离过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号