首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Laboratory bioassays were carried out to determine the efficacy of spinosad applied alone or combined with the diatomaceous earth (DE) SilicoSec against adult rice weevils, Sitophilus oryzae and confused flour beetles, Tribolium confusum. Efficacy was assessed on wheat and maize at three dosages of spinosad dust formulation (corresponding to 0.0625, 0.1875 and 0.625 ppm of active ingredient [AI] for S. oryzae and to 0.1875, 0.625 and 1.25 ppm of AI for T. confusum), alone or combined with SilicoSec at 150 ppm for S. oryzae and 250 ppm for T. confusum. The mortality of S. oryzae exposed for 14 d on wheat treated with spinosad ranged between 83% and 100%. Conversely, the mortality of S. oryzae on maize treated with DE or on maize treated with lower doses of spinosad dust did not exceed 19% and was only 59% on maize with the highest spinosad dust treatment. Generally, the presence of SilicoSec combined with spinosad did not significantly increase S. oryzae mortality compared with spinosad alone. For T. confusum, mortality on both commodities was lower than for S. oryzae. After 14 d of exposure on wheat, mortality was 14% at the highest dose of spinosad, but increased to 33% in the presence of DE. Similar results were also obtained for T. confusum exposed on treated maize, which indicated a joint action between spinosad and DE. In the case of S. oryzae, the inclusion of DE reduced progeny production in comparison with spinosad alone. Progeny production of T. confusum was relatively low in all treatments, compared to progeny production of S. oryzae. The results of the study show the potential of combination treatments of spinosad dust and DE, but efficacy varies with the target insect species and commodity.  相似文献   

2.
Six populations of the confused flour beetle, Tribolium confusum, obtained from Greece, Italy, Portugal, Denmark, Germany and France were tested for their susceptibility to a spinosad dust formulation, containing 0.125% spinosad. For this purpose, adults and larvae of T. confusum were exposed on wheat treated with two dose rates of the dust formulation, 0.06 and 0.19 ppm of a.i. corresponding to 50 and 150 ppm of the formulation, at 25 °C and 65% r.h. Mortality of the exposed individuals was assessed after 7, 14 and 21 days of exposure on the treated substrate. The increase of dose and exposure interval increased mortality, while adults were more tolerant to spinosad than larvae. Significant differences were noted among populations, for both adults and larvae. The most tolerant to spinosad was the strain from Greece, while the least tolerant were the strains from Germany and Denmark. After 7 days of exposure, on wheat treated with 50 ppm, mortalities of adults of the Greek, German and Danish strains were 2%, 25% and 62% respectively, while the respective figures for 150 ppm were 1%, 31% and 81% respectively. In the case of larvae, of the same strains, mortality at 50 ppm was 6%, 27% and 28% and at 150 ppm 11%, 23% and 40%, respectively. The results of the present study suggest that different strains and stages of T. confusum differ widely in their susceptibility to spinosad-treated wheat.  相似文献   

3.
Laboratory tests were carried out in order to evaluate the efficacy of three diatomaceous earth (DE) formulations; Protector, SilicoSec, and Insecto, and one spinosad dust formulation in three commercially available wheat (Triticum durum) varieties, Athos, Pontos, Sifnos, originating from Greek cultures. The efficacy of the above formulations was assessed against adults of Rhyzopertha dominica, Sitophilus oryzae and Tribolium confusum. The DE formulations were applied at three dose levels; 250, 500 and 1000 ppm, while spinosad was applied at 100, 500 and 1000 ppm of the formulation, corresponding to 0.125, 0.625 and 1.25 ppm active ingredient (a.i.), respectively. The adherence ratio of the DE and spinosad formulations to the kernels of the wheat varieties was assessed. Bioassays were carried out at 30°C and 60% r.h. Mortality was recorded after 7 and 14 d in the case of R. dominica and S. oryzae, and after 7 d, 14 d and 21 d of exposure in the case of T. confusum, on the treated varieties. Progeny production of the individuals exposed on the treated varieties was also assessed. Even the lowest dose of spinosad was highly effective (>90%) against R. dominica and S. oryzae. In the case of T. confusum a combination of longer exposures with higher doses was required for each formulation to be effective. Generally, the performance of all formulations was greater in Athos or Sifnos compared to the Pontos. Progeny production of S. oryzae and R. dominica was significantly higher in untreated Pontos than in the other varieties. Progeny production was always greater in untreated than treated substrates. Although adherence ratios for the tested DE and spinosad formulations were generally high (>90%), significant variations in adherence levels among the wheat varieties were recorded.  相似文献   

4.
An enhanced mixture of diatomaceous earth (DE) with the plant extract bitterbarkomycin (BBM) was evaluated in the laboratory against adults of three major stored-product pest species. This mixture (DEBBM) was applied at three dose levels; 50 ppm, 100 ppm and 150 ppm and on four grain commodities; hard wheat, barley, rice and maize. The species tested were Sitophilus oryzae, Tribolium confusum and Cryptolestes ferrugineus. In order to determine the influence of temperature and r.h. on the efficacy of DEBBM the bioassays were carried out at three temperatures; 20, 25 and 30 °C and two relative humidity (r.h.) levels; 55% and 75%. Mortality and progeny production of each species were assessed after exposures of 7 and 14 d. DEBBM efficacy was increased with the increase of dose, exposure and temperature whereas it was decreased with the increase of r.h. Mortality of all species was higher in treated barley compared to the other grains, although significant differences between barley and wheat were not recorded in all cases. Also, DEBBM performance in maize and rice was lower compared to that in barley or wheat. DEBBM was very effective against C. ferrugineus as mortality of this species that was achieved with 150 ppm was always >85%. Of the remaining species the least susceptible to DEBBM was T. confusum. Although DEBBM caused significant mortality to all three species, progeny production was not totally avoided. However, progeny production was significantly lower in comparison with the untreated commodities.  相似文献   

5.
In this study, the susceptibility of two stored-product insects, Ephestia kuehniella and Tribolium confusum, to gaseous ozone was investigated. Two ozone fumigation methods were used, an empty space fumigation with only one flush of ozone treatment held for 2 h, and a reflush ozone treatment at 30-min intervals for 5 h in the presence of 2 kg wheat, with an initial ozone concentration of 13.9 mg/L. Toxicity data for empty space ozone treatments indicated a remarkable difference in susceptibility between the life stages of E. kuehniella and T. confusum. For E. kuehniella, empty space ozone treatment resulted in complete mortality of adults, pupae and larvae, while only 62.5% of the eggs were killed. For T. confusum, ozone treatment resulted in very low mortality of adults, pupae and eggs, ranging from 4.2 to 14.1% while only larvae had a high mortality (74%). Generally T. confusum was more tolerant to ozone treatment than E. kuehniella. Ozone flush treatment at 30-min intervals for 5 h resulted in almost complete mortality of all life stages of E. kuehniella placed in the top position of 2 kg wheat, whereas eggs of E. kuehniella placed in the bottom position of 2 kg wheat were hard to kill. For T. confusum, larvae placed in the bottom position of 2 kg wheat were easily killed, whereas eggs, pupae and adults survived.  相似文献   

6.
Wheat flour and different packaging surfaces (cardboard, flour bag, muslin bag, paper bag, pallet wrap, plastic overwrap, polyethylene) were exposed to aerosol formulations of either 1% active ingredient (AI) pyrethrin (synergized with piperonyl butoxide)+ 33.6% (AI) methoprene or 3% (AI) pyrethrin + 33.6% AI methoprene. The mixture was formulated as specified on the insecticide labels to give a 100 to 1 ratio of active ingredient pyrethrin to methoprene. Residual bioassays were conducted every two weeks for 16 weeks post-exposure to the aerosol by placing four-week-old larvae of the red flour beetle, Tribolium castaneum (Herbst), or the confused flour beetle, Tribolium confusum (Jacqueline duVal), on treated flour or a treated packaging surface with untreated flour added. T. castaneum was clearly the more susceptible of the two species. Less than 2% of T. castaneum larvae exposed to aerosol-treated flour or packaging surfaces emerged as normal adults, regardless of the pyrethrin concentration. Most of the T. castaneum larvae on treated flour did not advance to the pupal stage because they were either developmentally arrested or died as larvae. They were able to develop further on the treated packaging surfaces, but still could not emerge as adults. T. confusum larvae exposed to aerosol-treated flour or packaging surfaces were able to develop to the pupal or adult stage. Emergence of normal-appearing adults from T. confusum larvae exposed on the packaging surfaces treated with 1% pyrethrin + methoprene gradually increased (range of 29.7 ± 2.9 to 49.0 ± 6.7%, depending on the surface), whereas adult emergence of larvae exposed to treated flour peaked at 10 weeks post-exposure. However, when T. confusum was exposed to 3% pyrethrin + methoprene treated flour or packaging surfaces, adult emergence was reduced. Overall there were few significant differences attributable to the individual packaging surfaces.  相似文献   

7.
We evaluated the following six insecticides: cypermethrin, deltamethrin, pirimiphos-methyl, silicoSec, s-methoprene and spinosad, that are registered as grain protectants, against adults or larvae of the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on wheat, barley, maize and rough rice. Three doses were tested: the half of the label dose, the label dose and the double label dose for each insecticide and mortality was assessed after 1, 3, 7 and 14 days (d) post exposure. For parental adults, progeny production was estimated after an additional period of 46 d of exposure. All tested insecticides were able to suppress T. granarium adults, even at the lowest dose. Pirimiphos-methyl and silicoSec were found to be most effective than the other insecticides, as these were the only ones that caused application resulted in 100% mortality at the 7-d exposure interval, at the half label or label dose. Conversely, the majority of the insecticides tested were found to be ineffective against T. granarium larvae. Pirimiphos-methyl was the only insecticide on which larval mortality reached 100% on all commodities tested and by far more effective than the other insecticides. For both adults and larvae, mortalities were generally higher on wheat and barley, than on rough rice and maize, for most of the combinations tested. Our findings indicate that the biological stage (i.e., adults or larvae) and the type of infected commodity should be seriously considered when insecticidal management strategies with cypermethrin, deltamethrin, pirimiphos-methyl, silicoSec, s-methoprene or spinosad are planned against T. granarium.  相似文献   

8.
Laboratory tests were carried out to evaluate the effect of diatomaceous earth (DE) originated from Egypt and Trichoderma harzianum on the efficacy of spinosad applied at low application rates against Sitophilus oryzae adults in stored wheat. Spinosad was assessed at 0.05, 0.1 and 0.5 mg/kg (ppm) alone or combined with DE at 100, 500 and 1000 mg/kg (ppm) or with T. harzianum at 3.3 × 106, 6.6 × 106 and 2.1 × 107 spores/kg. Adult mortality after 7, 14 and 21 days, progeny reduction after 45 and 90 days, and wheat weight loss were determined for all individual and binary treatments. Adult mortality increased with respect to increased exposure interval and application rate. Complete adult mortality (100%) was achieved after 21 days using 0.5 mg/kg of spinosad with all tested doses of DE and with 2.10 × 107 spores/kg of T. harzinum). Progeny production of S. oryzae was significantly reduced at all treatments compared to untreated wheat. No progeny was observed in the wheat treated with the combined treatments (0.5 mg/kg of spinosad + 1000 mg/kg of DE) and (0.5 mg/kg of spinosad + 2.10 × 107 spores/kg of T. harzinum) after 45 and 90 days. Similar trends were noted for wheat weight loss as the combined treatments at highest rates preserved the wheat intact and free from damage caused by S. oryzae for 90 days. Our findings suggest the combinations of spinosad at low rates with DE or T. harzianum can be effectively used for the control S. oryzae and provide long-term protection of stored wheat.  相似文献   

9.
The resistance of insect populations to the existing insecticides grows fast due to their continuous use. Thus, the need for new and effective formulations is increasing. Isolated compounds of botanical origin may represent a promising solution for green pest management strategies. In this study, isofuranodiene derived from Smyrnium olusatrum L. (Apiales: Apiaceae) essential oil (EO), was nanoemulsified (3% w/w) to treat wheat kernels with two concentrations (500 and 1000 ppm) against adults and larvae of three tenebrionid beetles attacking stored products, the red flour beetle, Tribolium castaneum (Herbst), the confused flour beetle Tribolium confusum Jacquelin du Val, and the yellow mealworm beetle, Tenebrio molitor L. Mortality rates were calculated after 4, 8 and 16 h and 1, 2, 3, 4, 5, 6 and 7 days. The isofuranodiene-based nanoemulsion (NE) exhibited high adulticidal effects against T. molitor, and larvicidal activity against T. castaneum and T. confusum, reaching 98.6, 97.4 and 93.5% at 1000 ppm after 7 days of exposure, respectively. On the other hand, the NE caused low mortality rates on adults of T. castaneum and T. confusum, as well as on larvae of T. molitor, not exceeding 26.2, 10.0 and 15.6% at 1000 ppm, 7 days post-exposure, respectively. Overall, the 3% (w/w) isofuranodiene-based NE developed here has a significant potential to protect stored wheat from tenebrionid beetle infestations.  相似文献   

10.
In the present study, we investigated the insecticidal efficacy of indoxacarb on wheat and maize, against adults of three major stored-grain species, the rice weevil, Sitophilius oryzae (L.) (Coleoptera: Curculionidae), the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and the confused flour beetle, Tribollium confusum Jacquelin Du Val (Coleoptera). For this purpose, bioassays were carried out with indoxacarb at the doses 0.1, 1 and 10 ppm. Moreover, the treated grains were left at the laboratory for a period of six months, in order to examine the residual effect of indoxacarb, by conducting bioassays at monthly intervals. For S. oryzae and R. dominica, adults were exposed in the treated grains for 7 and 14 d, while for T. confusum adults were exposed for 14 and 21 d, in order to estimate the mortality level. After the termination of this interval, the treated samples were left for an additional period of 65 days, on which progeny production was recorded. R. dominica was by far more susceptible than S. oryzae, given that mortality, in many cases, reached 100% even after 7 d of exposure, even at the lowest dose rate of 0.1 ppm. At the same time, for this species, progeny production was low. For S. oryzae, mortality was low at 0.1 ppm, with high levels of progeny production. T. confusum was the least susceptible of the species tested. Generally, during the experimental period, the efficacy of indoxacarb was decreased, but mortality was higher on wheat than on maize. Indoxacarb residues determination by GC-ECD indicated that after 6 months 33% of the insecticide remains in grains at 0.1 ppm dose, about 40–50% at 1 ppm and about 40–60% at 10 ppm dose. Based on the results of the present work, indoxacarb is an effective grain protectant, at least in the case of R. dominica and S. oryzae.  相似文献   

11.
The yellow mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) is a noxious insect that causes serious damages to stored products worldwide. In the present study, pirimiphos-methyl, deltamethrin, spinosad and silicoSec were evaluated as grain protectans against adults, small and large larvae of this species on wheat, barley and maize at label doses. Mortalities were estimated after 1, 3, 7 and 14 days of exposure. All tested insecticides were able to control T. molitor adults. Complete (100%) mortality of adults was noted after 14 days of exposure on wheat and maize treated with pirimiphos-methyl or silicoSec and barley treated with pirimiphos-methyl, silicoSec and spinosad. Larvae were more tolerant than adults to insecticidal treatments. However, pirimiphos-methyl caused high levels of mortality to small larvae that were 71.1, 91.1 and 60% on wheat, barley and maize respectively after 14 days post exposure. The type of commodity played a significant role on the performance of the tested insecticides. Mortality was higher on barley and wheat than on maize for all tested stages and insecticides. Our results indicate that the life stage of T. molitor and the type of commodity should be taken into account for the management of this species.  相似文献   

12.
Laboratory experiments were conducted in Pakistan to investigate the effectiveness of the diatomaceous earth (DE) formulation, Protect-It, at 150 ppm and imidacloprid, at 1.25, 2.5 and 5.0 ppm, alone or in combination, against the rusty grain beetle, Cryptolestes ferrugineus Stephens (Coleoptera: Laemophloeidae), the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae), the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and the psocid, Liposcelis paeta Pearman (Psocoptera: Liposcelididae). The bioassays were conducted at 25 °C, 65% relative humidity (r.h.) and continuous darkness by using adults of each insect pest that were exposed on treated or untreated wheat, rice and maize. Adult mortality counts were performed 1, 2, 4 and 7 days post-exposure. Progeny production was also evaluated 62 and 30 days after the last mortality count for beetles and psocid respectively. Results showed that mortality was increased with the increase of dose and exposure interval. Imidacloprid was more effective at the highest dose than the DE alone. The combination of DE plus imidacloprid resulted to higher mortalities than DE or imidacloprid alone at almost all exposure intervals. There was higher mortality on wheat than on rice or maize. In general, T. castaneum was the most tolerant insect species to any treatment while L. paeta was the least tolerant. The highest progeny production was observed for T. castaneum (i.e., 33.1 individuals per vial) while the lowest for L. paeta (i.e., 11.1 individuals per vial) on maize treated with Protect-It alone. The findings of the current study indicate that the combined use of DE and imidacloprid, as wheat, rice and maize protectants, may provide adequate level of management to several important stored-product insects.  相似文献   

13.
In this study the adulticidal and larvicidal effect of tansy, Tanacetum vulgare L. (Asteraceae) essential oil (EO) was estimated against four noxious stored-product insect species; Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae), Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae). The EO chemical composition, as determined by GC-MS, was dominated by oxygenated monoterpenes (68.2%), with borneol (13.6%), umbellulone (11.7%), artemisia ketone (9.3%), cis-chrysanthenol (6.9%), camphor (5.9%), and terpinen-4-ol (5.5%) as the major constituents. This profile was quite different from those previously reported from other T. vulgare European accessions which are characterized by high content of the toxic trans-thujone. The T. vulgare EO was applied as wheat protectant at two concentrations of 500 and 1000 ppm. Adult and larval mortality levels were estimated after 4, 8 and 16 h and 1, 2, 3, 4, 5, 6 and 7 days. Tanacetum vulgare EO caused complete mortality (100%) to T. castaneum larvae, but only 25.6% to adults at 1000 ppm 6 and 7 days post-exposure, respectively. The mortality rates of T. confusum larvae and adults were 56.7 and 8.9% on wheat treated with 1000 ppm EO, respectively after 7 days of exposure. The ΕΟ caused moderate mortality to T. molitor adults (52.2%), and low mortality to larvae (8.9%), at 1000 ppm at the end of the experimental period. High mortality of O. surinamensis larvae (93.3%) was noticed at 1000 ppm after 7 days of exposure, while only 13.3% of the exposed adults were dead at the same concentration and exposure interval. Overall, the T. vulgare EO could be considered as a potential wheat protectant for the management of important stored-product insects. However, its efficacy depends on the species and the life stage of the target pest.  相似文献   

14.
Spinetoram is a novel insecticide that belongs to the spinosyn class of insecticidal chemicals. The efficacy of spinetoram against numerous insect pest species in a variety of field crops has been well demonstrated. However, there are no data available for the effectiveness of spinetoram against stored grain insects. In the present study, we evaluated spinetoram as a grain protectant, against six stored-product Coleoptera. The species tested were: the rice weevil, Sitophilus oryzae, the lesser grain borer, Rhyzopertha dominica, the larger grain borer, Prostephanus truncatus, the confused flour beetle, Tribolium confusum, the granary weevil, Sitophilus granarius and the sawtoothed grain beetle, Oryzaephilus surinamensis. All species were tested at the adult stage, on wheat (or maize in the case of P. truncatus) treated to achieve spinetoram concentrations of 0.01, 0.1, 0.5, 1, 2, 5 and 10 ppm. Mortality was recorded after 1, 2, 7, 14 and 21 d of exposure, and 65 d later the wheat and maize were examined for offspring emergence. Among the species examined, P. truncatus and R. dominica were by far the most susceptible, given that mortality was close to 100% after 7 d on wheat treated or maize with 0.1 ppm of spinetoram. At this concentration, progeny production of P. truncatus and R. dominica was negligible. On the other hand, T. confusum was the least susceptible; mortality reached 95% only at 10 ppm, and only after 14 d of exposure. Similarly, O. surinamensis was of limited susceptibility to spinetoram; mortality reached 95% only after 14 d of exposure on wheat treated with 5 ppm. Nevertheless, offspring emergence of these species was extremely low. For S. granarius and S. oryzae, complete (100%) mortality was recorded after 14 d of exposure, at 0.5 and 1 ppm, respectively. At these concentrations or higher, progeny production was notably reduced. The results of the present study demonstrate that spinetoram is effective as a grain protectant, but its efficacy varies according to the target species, concentration and exposure interval.  相似文献   

15.
Laboratory studies were conducted in order to evaluate the insecticidal potential of three commercially available zeolite formulations against adults of Sitophilus oryzae, Tribolium confusum and Oryzaephilus surinamensis in wheat. For each zeolite formulation, three particle size levels were tested, i.e. 0–50, 0–150 and 0–500 μm. Zeolites were applied at three dose rates, 250, 500 and 1000 ppm, and insect mortality was assessed after 2, 7, 14 and 21 d of exposure. After the final mortality count, dead and alive insects were removed and offspring numbers were determined following an additional period of 65 d. In another series of laboratory bioassays, the effect of zeolite application on the test weight of wheat, maize and barley, as well as the adherence of zeolite particles to wheat, maize, barley and rice kernels was also measured. Oryzaephilus surinamensis was the most susceptible species to zeolite application, regardless of the zeolite formulation, dose and particle size level tested, whereas T. confusum was the most tolerant. No significant differences in efficacy were recorded among the three tested zeolite formulations. At the same time, particle size did not affect zeolite efficacy, at least for the particle size levels tested. All zeolites caused a significant reduction on the test weight of the treated grains. Moreover, zeolite particles showed different adherence among wheat, maize, barley and rice kernels. The results of the present study indicate that zeolites can be used with success as grain protectants, but there is a considerable effect on some physical properties of the grains. This information aims to encourage further evaluation of zeolites as grain protectants.  相似文献   

16.
A key element in postharvest IPM is the reduction of chemical residues in food through the use of reduced dosages of less toxic grain protectants. Two laboratory experiments were conducted: Experiment I determined the efficacies of straight diatomaceous earths (DEs) – “Chemutsi” (African raw DE), MN51 (new formulation) and Protect-It® (enhanced DE), and two new food grade DE-based formulations (A2 and A3) against adult Prostephanus truncatus (Horn), Sitophilus zeamais (Motschulsky) and Tribolium castaneum (Herbst) admixed with shelled maize. In Experiment II, Chemutsi and Protect-It® were further tested in varying combinations with low-dose deltamethrin and spinosad. At 21 days post-exposure, MN51 800 ppm and 1000 ppm, Chemutsi 1000 ppm, Protect-It® 600 ppm and food grade A3 150 ppm caused S. zeamais mortalities that were not significantly different from the positive control (Protect-It® 1000 ppm). However, after the same exposure period, all the straight DEs (applied at ≤ 1000 ppm) and the DE-based food grade formulations were not effective on P. truncatus and T. castaneum. In low dose combinations, 7 day mortalities showed high S. zeamais susceptibility to both DE-spinosad and DE-deltamethrin while P. truncatus was more susceptible only to DE-spinosad and T. castaneum to Protect-It®-deltamethrin only. At 21 days, all DE-spinosad and DE-deltamethrin treatments were effective and not significantly different from the commercial grain protectant (fenitrothion 1.0% w/w (10000 ppm) + deltamethrin 0.13% w/w (130 ppm)) on all test species. DE-spinosad and DE-deltamethrin combinations significantly suppressed (P < 0.001) F1 progeny for the three test species whereas straight DEs and DE-based food grade formulations did not. Our results showed that at half the label rates or lower, DE-spinosad and DE-deltamethrin combinations were effective alternative grain protectants that are safer and possibly cheaper. We also give the first report on the effectiveness of Chemutsi in combination with spinosad or deltamethrin on maize grain.  相似文献   

17.
Anka rice (AR), previously inoculated with Monascus purpureus, was added during manufacturing of low-nitrite Chinese sausages. Chemical compositions and water activities of sausages were not affected. “L”, “a”, and “b” values of sausages with less nitrite (25 ppm) and 0.5% AR added were not significantly different from those with more nitrite (100 ppm) added. Colours of the sausages without AR were light red whereas those with AR added were darker red. Addition of AR did not inhibit lipid oxidation. Higher VBN (volatile basic nitrogen) values of the samples with AR added were observed. With addition of AR, the nitrite degrading rate was retarded. Microbial counts of the sausages with AR added were significantly higher than those of the controls (100 ppm nitrite). The low-nitrite Chinese sausage with addition up to 1.5% AR was acceptable when stored at 4 °C for 28 days.  相似文献   

18.
Efficacy of filter cake and Triplex powders was evaluated against the red flour beetle, Tribolium castaneum (Herbst); saw-toothed grain beetle, Oryzaephilus surinamensis (L.); and Indian meal moth, Plodia interpunctella (Hübner). Mortality of T. castaneum and O. surinamensis was determined 14 d after exposing 20 adults to 100 g of maize and wheat treated with 0, 0.3, 0.5, 0.7, 1, 2, and 3 g/kg of filter cake and 0, 0.5, 0.7, 1, 2, 3, 6, 8, and 10 g/kg of Triplex. Adult progeny production was determined at 42 d. Live larvae at 21 d and adults of P. interpunctella that emerged at 42 d were determined by exposing 100 eggs to 0, 0.2, 0.3, 0.5, 0.7, 1, 2, and 3 g/kg of filter cake and 0, 0.3, 0.5, 0.7, 1, 2, 3, 6, and 8 g/kg of Triplex treated maize and wheat. On both grains, 100% mortality of T. castaneum and O. surinamensis adults was observed after exposure to 2–3 and 1–3 g/kg of filter cake, respectively. On wheat, 100% mortality only of O. surinamensis was observed in 2–3 g/kg Triplex treatment. Adult progeny production of T. castaneum and O. surinamensis was completely suppressed on both grains treated with 0.7–3 g/kg of filter cake. Adult progeny production of T. castaneum was completely suppressed at 1–3 g/kg of Triplex treated grains, whereas complete suppression of O. surinamensis was achieved only on maize treated with 2–3 g/kg of Triplex. Both live larvae at 21 d and adults of P. interpunctella that emerged at 42 d were completely suppressed when eggs were exposed to 2–3 and 0.5–3 g/kg filter cake treated maize and wheat, respectively, and on 6–8 and 3 g/kg Triplex treated maize and wheat, respectively. Filter cake was more efficacious compared to Triplex on both grains.  相似文献   

19.
The confused flour beetle, Tribolium confusum, and the Mediterranean flour moth, Ephestia kuehniella, are important pests of stored grain products. The insecticidal effect of three strains (UK 76 [=Nemasys], USA/SC, and Hawaii) of the entomopathogenic nematode Steinernema feltiae was determined in the laboratory, in wheat, against these pests. The nematodes were applied at three dose rates: 100, 300 and 900 nematodes/insect individual. The Hawaii strain was most virulent against T. confusum adults and larvae, with a significant dose effect in the case of the larvae. Larval mortality of this species reached 79% and 100% after 7 and 14 d of exposure to the nematodes, respectively, at the highest dose applied. On the other hand, adult mortality of T. confusum did not exceed 66%. In the case of E. kuehniella larvae, USA/SC performed best causing 52% and 69% mortality after 7 and 14 d exposure, respectively, at the highest dose tested. Since very few data are available on the effect of entomopathogenic nematodes against these pests, it is concluded that the Hawaii and USA/SC strains of S. feltiae should be further investigated as promising biological control agents for T. confusum and E. kuehniella.  相似文献   

20.
Bioassays were carried out to assess whether the commodity, from which adults of the rice weevil Sitophilus oryzae emerged, influences the insecticidal efficacy of three diatomaceous earth (DE) formulations: Protect-It™, PyriSec® and DEBBM. Protect-It™ is a DE formulation that contains 10% silica gel, while PyriSec® and DEBBM are enhanced DEs that contain natural pyrethrum and the plant extract bitterbarkomycin, respectively. The S. oryzae populations tested were reared on wheat, barley or maize and the susceptibility of each to the DE formulations was assessed on all three commodities. The DE application doses were: 500 ppm for Protect-It™ and PyriSec®; 150 and 75 ppm for DEBBM. Mortality of S. oryzae adults was counted 7 and 14 d after their exposure on the treated commodities. Bioassays were carried out at 25 °C and 55% r.h. Barley-reared S. oryzae were the most tolerant of all formulations and treated commodities, whereas maize-reared were the most susceptible ones. DE effectiveness was always lower in maize than in wheat or barley irrespective of the commodity from which the populations were obtained. Furthermore, Protect-It™ and PyriSec® were more effective than DEBBM in wheat or barley, but not in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号