首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial.  相似文献   

2.
As the demand for renewable energy increases, it becomes important to critically examine the environmental impacts of renewable energy production. Often, the approach has been trial and error in renewable energy with respect to its impact on the environment. Hydrokinetic Energy Extraction (HEE) has been seen as a potentially “benign” form of renewable hydropower. This paper provides a benchmark for initial measurement of HEE environmental impacts, since negative outcomes have been present with previously assumed “benign” renewable hydropower. A Gorlov system was used to represent a HEE system. Life Cycle Assessment (LCA) was utilized to compare the environmental impacts of HEE with small hydropower, coal, natural gas and nuclear power. Environmental Protection Agency (EPA) criteria air emissions were quantified and compared over the life cycle of the systems. Life cycle air emissions were used in combination with TRACI to compare the systems. The Gorlov system was found to have the lowest life cycle impact with a system lifetime comparison, and did compare closely with small hydropower.  相似文献   

3.
The renewable energy sources are often presented as ‘clean’ sources, not considering the environmental impacts related to their manufacture. The production of the renewable plants, like every production process, entails a consumption of energy and raw materials as well as the release of pollutants. Furthermore, the impacts related to some life cycle phases (as maintenance or installation) are sometimes neglected or not adequately investigated.The energy and the environmental performances of one of the most common renewable technologies have been studied: the solar thermal collector for sanitary warm water demand. A life cycle assessment (LCA) has been performed following the international standards of series ISO 14040. The aim is to trace the product's eco-profile that synthesises the main energy and environmental impacts related to the whole product's life cycle. The following phases have been investigated: production and deliver of energy and raw materials, production process, installation, maintenance, disposal and transports occurring during each step. The analysis is carried out on the basis of data directly collected in an Italian factory.  相似文献   

4.
Nowadays one of the most important environmental issues is the exponential increase of the greenhouse effect by the polluting action of the industrial and transport sectors. The production of biofuels is considered a viable alternative for the pollution mitigation but also to promote rural development. The work presents an analysis of the environmental impacts of the methanol production from sugarcane bagasse, taking into consideration the balance of the energy life cycle and its net environmental impacts, both are included in a LCA (Life Cycle Assessment) approach. The evaluation is done as a case study of a 100,000 t/y methanol plant, using sugarcane bagasse as raw material. The methanol is produced through the BTL (Biomass to Liquid) route. The results of the environmental impacts were compared to others LCA studies of biofuel and it was showed that there are significant differences of environmental performance among the existing biofuel production system, even for the same feedstock. The differences are dependent on many factors such as farming practices, technology of the biomass conversion. With relation to the result of output/input ratio, the methanol production from sugarcane bagasse showed to be a feasible alternative for the substitution of an amount of fossil methanol obtained from natural gas.  相似文献   

5.
A comparative environmental study is reported of nuclear-based hydrogen production using thermochemical water decomposition cycles. The investigation uses a life cycle assessment (LCA) as is an analytical tool to evaluate and reduce the environmental impact of the system or product. The LCA results are presented in terms of acidification potential and global warming potential. Since LCA often utilizes software to model and analyse the system, an artificial neural network (ANN) method can be advantageous. Here, an ANN method is applied to a nuclear-based hydrogen production system. Using an ANN method in this study eliminates the need to use LCA software separately and facilitates the determination of the impacts of altering input parameters of a system (e.g., heat, work, production capacity and plant lifetime). The neural network approach to identify the best system option, consistent with LCA software results, is developed here using ten neurons in the hidden layers.  相似文献   

6.
In this paper, a comparative environmental study is reported of the Cu-Cl water-splitting cycle with various other hydrogen production methods: the sulphur-iodine (S-I) water-splitting cycle, high temperature water electrolysis, conventional steam reforming of natural gas and hydrogen production from renewable resources. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the thermochemical cycles have lower environmental impacts while steam reforming of natural gas has the highest.  相似文献   

7.
Dynamic life cycle assessment (LCA) of renewable energy technologies   总被引:2,自引:0,他引:2  
Martin   《Renewable Energy》2006,31(1):55-71
Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are ‘imported’ into the system due to the ‘background system’ (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies.Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to ‘external’ services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation.The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent.  相似文献   

8.
Assessing the environmental performance of hydrogen infrastructures is essential for determining their practical viability. Previous optimization approaches for hydrogen networks have focused on optimizing a single environmental metric in conjunction with the economic performance. This approach is inadequate as it may leave relevant environmental criteria out of the analysis. We propose herein a novel framework for optimizing hydrogen supply chains (SC) according to several environmental indicators. Our method comprises two steps. In step one, we formulate a multi-objective mixed-integer linear program (MILP) that accounts for the simultaneous minimization of the most relevant life cycle assessment (LCA) impacts. Principal Component Analysis (PCA) is next employed in the post-optimal analysis of the MILP in order to facilitate the interpretation and analysis of its solution space. We demonstrate the capabilities of this approach through its application to the design of the future (potential) hydrogen SC in Spain.  相似文献   

9.
Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for various products viz. goods, services, etc. This paper presents a review of life cycle assessment (LCA) of solar PV based electricity generation systems. Mass and energy flow over the complete production process starting from silica extraction to the final panel assembling has been considered. Life cycle assessment of amorphous, mono-crystalline, poly-crystalline and most advanced and consolidate technologies for the solar panel production has been studied.  相似文献   

10.
This work performs a comparative life cycle assessment (LCA) of two fuels for heating boilers, namely wood chips and oil. The LCA methodology allows comparing the environmental impacts of the two analyzed fuels, thus assessing which is environmentally more advantageous. The study is focused on Mediterranean forests located in the Argençola region (Catalonia, northeastern Spain) by applying forest management practices focused to ensure a sustainable exploitation. The direct use of wood chips as a fuel for boilers simplifies notably the number of processes involved in producing such a fuel. The results presented clearly show the environmental benefits of using small-scale produced wood chips instead of fossil oil by analyzing representative impact categories defined by the CML and EDIP methods, even when considering the changes in the carbon stock in the forests under analysis due to the management approach adopted. A sensitivity analysis has also been conducted to assess the impact of the data with higher uncertainty on the final LCA results.  相似文献   

11.
The LCA is a method enabling the performance of a complete study on the environmental impacts of the product, taking into consideration all its life cycle (“from the cradle to the tomb” or, better “from the cradle to the cradle” when also the maximum recycling/reusing of the materials is provided. There are many procedures to perform an LCA of the consumers’ products. In particular, the SUMMA method (Sustainability Multi-criteria Multi-scale Assessment) allows obtaining a number of indices of efficiency and environmental sustainability which make the LCA assessment much more complete and significant. LCA method often represents the basis for an additional assessment of industrial products and processes, the LCC (Life Cycle Costing) which, allowing the association of economic variables to any phase of the life cycle, represents a useful tool for financial planning and management. The case study analysed in the present work concerns an LCA analysis, using the SUMMA method and the LCC of one small size molten carbonate fuel cell, 2.5 kW, assembled in the Fuel Cells Laboratory within the Educational Pole of Terni at the Università degli Studi di Perugia. For sake of completeness of the results, the methods Ecoindicator99 and Impact2002 + were used in the analysis, as implemented in the used calculation software, the SimaPro 7.1 by PRè Consultants. From the registered results, it emerges that the environmental energy sustainability of the analysed element enables its widespread and in-depth employment in the phase subsequent to the optimisation of the connected economic frame; the scenarios opened by the present work envisage great margins of improvements of said aspects in the future experiments.  相似文献   

12.
This paper aims at reviewing the life cycle assessment (LCA) literature on second generation bioethanol based on lignocellulosic biomass and at identifying issues to be resolved for good LCA practice. Reviews are carried out on respective LCA studies published over the last six years. We use the classification of lignocellulosic biomass to define system boundaries, so that the comparison among LCA results can be thoroughly assessed based on identified system components. A basis for attributing environmental burden for different biomass feedstocks is also suggested. Despite the non-homogeneous systems, we conclude that second generation bioethanol performs better than fossil fuel at least for the two most studied impact categories, net energy output and global warming. For the latter category, carbon sequestration at the biomass generation stage can even consistently offset the GHG emissions from all parts of the life cycle chains at high ethanol percentage (≥85%). The aspect of biogenic carbon and agrochemical input for energy crops and biomass residues, and the effect of removal of the latter from soil have not been treated consistently. In contrast, the exclusion of upstream chain of biomass waste feedstocks is observed in practice. The bioethanol conversion process is mostly based on simultaneous saccharification and co-fermentation, characterized by high yield and low energy input. In this regard, the LCA results tend to under estimate the real impacts of the current technology. The choice of allocation methods strongly influences the final results, particularly when economic value is used as a reference. Substitution of avoided burden seems to be the most popular allocation method in practice, followed by partition based on mass, energy, and economic values.  相似文献   

13.
This study compares the environmental impacts of a polycrystalline photovoltaic (PV) module and a wind turbine using the life cycle assessment (LCA) method. This study models landfill disposal and recycling scenarios of the decommissioned PV module and wind turbine, and compares their impacts to those of the other stages in the life cycles. The comparison establishes that the wind turbine has smaller environmental impacts in almost all of the categories assessed. The disposal stage can become a major contributor to the environmental impacts, depending on disposal scenarios. Recycling is an environmentally efficient method, because of its environmental benefits derived from energy savings and resource reclaimed. The end-of-life recycling scenario for a wind turbine has a significant part on the environmental impacts and should not be ignored. However, many factors also influence the degree to which recycling can be beneficial. With the wind turbine recycling scenario, when large quantities of waste are recycled, the potential savings can be quite large, while with the PV module, small quantities of recycled waste mean that the benefits of recycling are not fully reaped.  相似文献   

14.
Although proton exchange membrane fuel cell (PEMFC) systems are expected to have lower environmental impacts in the operational phase, compared to conventional energy conversion systems, there are still certain economic, operational, and environmental setbacks. Durability under a wide range of operating conditions presents a challenge because degradation processes affect the PEMFC efficiency. Typically, life cycle assessment (LCA) of PEMFC systems do not include performance degradation. Thus, a novel semi-empirical PEMFC model is developed, which includes degradation effects caused by different operational regimes (dynamic and steady-state). The model is integrated into LCA through life cycle inventory (LCI) to achieve a more realistic and accurate evaluation of environmental impacts. Verification of the model clearly showed that the use of existing LCI models underestimates the environmental impacts. This is especially evident when green hydrogen is used in PEMFC operational phase, where manufacturing phase and maintenance (stack replacements) become more influential. Input parameters of the model can be modified to reflect technological improvements (e.g. platinum loading or durability) and evaluate the effects of future scenarios.  相似文献   

15.
This paper describes a new tool to assess the medium- and long-term economic and environmental impacts of large-scale policies. The approach - macro life cycle assessment (M-LCA) - is based on life cycle assessment methodology and includes additional elements to model economic externalities and the temporal evolution of background parameters. The general equilibrium model GTAP was therefore used to simulate the economic consequences of policies in a dynamic framework representing the temporal evolution of macroeconomic and technological parameters. Environmental impacts, expressed via four indicators (human health, ecosystems, global warming and natural resources), are computed according to policy life cycle and its indirect economic consequences. In order to illustrate the approach, two 2005-2025 European Union (EU) energy policies were compared using M-LCA. The first policy, the bioenergy policy, aims to significantly increase energy generation from biomass and reduce EU energy demand for coal. The second policy, the baseline policy, is a business as usual policy where year 2000 energy policies are extended to 2025. Results show that, compared to the baseline policy, the bioenergy policy generates fewer impacts on three of the four environmental indicators (human health, global warming and natural resources) at the world and EU scales, though the results may differ significantly at a regional level. The results also highlight the key contribution of economic growth to the total environmental impacts computed for the 2005-2025 period. A comparison of the results with a more conventional consequential LCA approach illustrates the benefits of M-LCA when modeling the indirect environmental impacts of large-scale policies. The sensitivity and uncertainty analysis indicates that the method is quite robust. However, its robustness must still be evaluated based on the sensitivity and uncertainty of additional parameters, including the evolution of economic growth.  相似文献   

16.
Low temperature gasification for solid residues is herein presented, its environmental impacts evaluated through life cycle assessment (LCA) and further compared with those from other techniques, including incineration. One tonne of municipal solid waste (MSW) was established as functional unit and investigated within defined boundaries. The environmental assessment of low temperature gasification revealed poor results for some of the evaluated impact categories, causes for the higher incineration performance being stated. Also, future perspectives on the combination of plasma and gasification were highlighted as a way to overcome the encountered weaknesses.  相似文献   

17.
The whole life of methanol fuel, produced by microalgae biomass which is a kind of renewable energy, is evaluated by using a method of life cycle assessment (LCA). LCA has been used to identify and quantify the environment emissions and energy efficiency of the system throughout the whole life cycle, including microalgae cultivation, methanol conversion, transport, and end-use. Energy efficiency, defined as the ratio of the energy of methanol produced to the total required energy, is 1.24, the results indicate that it is plausible as an energy producing process. The environmental impact loading of microalgae-based fuel methanol is 0.187mPET2000 in contrast to 0.828mPET2000 for gasoline. The effect of photochemical ozone formation is the highest of all the calculated categorization impacts of the two fuels. Utilization of microalgae an raw material of producing methanol fuel is beneficial to both production of renewable fuels and improvement of the ecological environment. This Fuel methanol is friendly to the environment, which should take an important role in automobile industry development and gasoline fuel substitute.  相似文献   

18.
The Eco-label scheme is becoming ever more important in the environmental certification of products and services, especially in light of the recent ambitious aim of containing greenhouse emissions and improving the efficiency of utilizing energy sources. A recently introduced hypothesis concerns the European Eco-label scheme relating to buildings, in the awareness that the construction industry is of primary importance to the whole economic and social life of states. This scheme should adopt an integrated approach to environmental problems and include construction, day-to-day management, and the possible disposal of building materials, throughout the life cycle of the building. In addition, in consideration of the particular scope of buildings, the main aim of this new scheme should also be to ensure enhanced conditions of comfort to the occupants of these buildings. In sight of this challenge, the building can be regarded as a summation of components (each of them characterized by a given level of environmental quality) or as a unique physical entity aimed at delivering suitable indoor condition to occupants with an assigned amount of primary energy and with a limited impact on the natural environment. In the paper, both approaches will be investigated, keeping also in mind the initiatives that are currently on the ground in the aim of establishing ecological criteria for the award of the Community Eco-label for buildings.  相似文献   

19.
Fuel cells own the potential for significant environmental improvements both in terms of air quality and climate protection. Through the use of renewable primary energies, local pollutant and greenhouse gas emissions can be significantly minimized over the full life cycle of the electricity generation process, so that marine industry accounts renewable energy as its future energy source. The aim of this paper is to evaluate the use of methanol in Solid Oxide Fuel Cells (SOFC), as auxiliary power systems for commercial vessels, through Life Cycle Assessment (LCA). The LCA methodology allows the assessment of the potential environmental impact along the whole life cycle of the process. The unit considered is a 20 kWel fuel cell system. In a first part of the study different fuel options have been compared (methanol, bio-methanol, natural gas, hydrogen from cracking, electrolysis and reforming), then the operation of the cell fed with methanol has been compared with the traditional auxiliary power system, i.e. a diesel engine. The environmental benefits of the use of fuel cells have been assessed considering different impact categories. The results of the analysis show that fuel production phase has a strong influence on the life cycle impacts and highlight that feeding with bio-methanol represents a highly attractive solution from a life cycle point of view. The comparison with the conventional auxiliary power system shows extremely lower impacts for SOFCs.  相似文献   

20.
The paradigm shift from fossil to renewable energy sources is driven, largely, by a growing sustainability awareness, necessitating more sophisticated measurements in terms of a wider range of criteria. Technical efficiency, financial profitability, environmental friendliness and social acceptance are some of the aspects determining the sustainability of renewable energy systems. The resulting complexity and sometimes conflicting nature of these criteria constitute major barriers to the implementation of renewable energy projects.The Worcester biomass procurement area in the Western Cape Province, South Africa, is used as a case study. It provides a blueprint for measuring the impacts of lignocellulosic bioelectricity systems – using life-cycle assessment (LCA), multi-period budgeting (MPB), geographic information systems (GIS) and multi-criteria decision-making analysis (MCDA), among others – and for prioritising the relevant criteria to determine the most sustainable technological option.Following the LCA approach, 37 plausible lignocellulosic bioenergy systems were assessed against five financial-economic, three socio-economic and five environmental criteria. On translating the quantitative performance data into a standardised ‘common language’ of relative performance, an expert group attached weights to the considered criteria, using the analytical hierarchy process (AHP). Assuming the prerequisite of financial-economic viability, the preferred option comprises a feller-buncher for harvesting, a forwarder for biomass extraction, mobile comminution at the roadside, secondary transport in truck-container-trailer combinations and an integrated gasification system for the conversion into electricity. This approach illustrates how to internalise externalities as typical market failures, aiding decision makers to choose the most sustainable bioenergy system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号