首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

2.
Hydrogen production from glycerol reforming in liquid (aqueous phase reforming, APR) and vapor (steam reforming SR) phase over alumina-supported nickel catalysts modified with Ce, Mg, Zr and La was studied. Characterization of catalysts by temperature programmed reduction and XPS analyses revealed important structural effects: (i) the intercalation of Mg between nickel and alumina that inhibited the alumina incorporation to nickel phases, (ii) the close contact between Ni and Zr phases and, (iii) the close surface interaction of La and Ce ions with NiO phases. The catalytic activity of the samples studied in this work clearly indicated the different catalyst functionalities necessary to carry out aqueous-phase and vapor-phase steam reforming of glycerol. For aqueous phase reforming of glycerol, the addition of Ce, La and Zr to Ni/Al2O3 improves the initial glycerol conversions obtained over the Ni/Al2O3 supported catalyst. It is suggested that the differences in catalytic activities are related with geometric effects caused by the decoration of Ni phases by Ce and La or by the close interaction between Ni and Zr. In spite that nickel catalysts showed high APR activities at initial times on stream, all samples showed, independently of support, important deactivation rates that deactivate the catalysts after few hours under operation. Catalysts characterization after APR showed the oxidation of the active metallic Ni during reaction as the main cause of the observed deactivation. In the case of the glycerol steam reforming in vapor phase, the use of Ce, La, Mg and Zr as promoters of Ni based catalysts increases the hydrogen selectivity. Differences in activity were explained in terms of enhancement in: surface nickel concentration (Mg), capacity to activate steam (Zr) and stability of nickel phases under reaction conditions (Ce and La).  相似文献   

3.
A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
  相似文献   

4.
Dry reforming of methane was studied over Ni catalysts supported on γAl2O3, CeO2, ZrO2 and MgAl2O4 (670 °C, 1.5 bar, 16–20 l CH4 mlcatalyst−1 h−1). It is shown that MgAl2O4 supported Ni catalysts promoted with both CeO2 and ZrO2 are promising catalysts for dry reforming of methane with carbon dioxide. Within a certain composition range, the simultaneous promotion with CeO2 and ZrO2 has great influence on the amount of coke and the catalyst service time. XRD analyses indicate that formation of crystalline CexZr1−xO2 mixed oxide phases occurs on double promotion. In particular, incorporation of low amounts of Zr in the CeO2 fluorite structure provides stable dry reforming catalysis. As shown with TPR, promotion leads to a higher reduced state of Ni. SEM, XRD and TPR analyses demonstrate that highly dispersed, doubly promoted Ni catalysts with a strong metal-support interaction are essential for stable dry reforming and suppression of the formation of carbon filaments.  相似文献   

5.
In this paper, ordered mesoporous MgO nanocrystals [MgO(M)] were synthesized, and the nickel catalysts supported on MgO(M) were facilely prepared by impregnation method. The obtained Ni/MgO(M) catalysts with advantageous textural properties were investigated as the catalysts for the carbon dioxide reforming of methane reaction. It was found that compared with the Ni/MgO(C) catalyst [MgO(C): commercial MgO], the mesoporous pore structure of MgO(M) could effectively limit the growth of the activity metal, and the Ni/MgO(M) catalysts showed high catalytic activities as well as long catalytic stabilities toward this reaction. The results showed that the conversions of CH4 and CO2 were only decreased <5 % after 100 h of reaction at 650 °C. The improved catalytic performance was suggested to be closely associated with both the advantageous structural properties, such as large specific surface area, uniform pore size, and the “confinement effect” of the mesoporous matrixes contributed to stabilize the Ni active sites during the reaction. The carbon species deposited on the spent Ni/MgO(M) catalyst were analysized by TG and Raman, and the results exhibited that the carbon species after 100 h of reaction were mainly active carbon species.  相似文献   

6.

Abstract  

The catalytic performance during combined steam and carbon dioxide reforming of methane (SCR) was investigated on Ni/MgAl2O4 catalyst promoted with CeO2. The SCR catalyst was prepared by co-impregnation method using nickel and cerium metal precursors on hydrotalcite-like MgAl2O4 support. In terms of catalytic activity and stability, CeO2-promoted Ni/MgAl2O4 catalyst is superior to Ni–CeO2/Al2O3 or Ni/MgAl2O4 catalysts because of high resistance to coke formation and suppressed aggregation of nickel particles. The role of CeO2 on Ni/MgAl2O4 catalyst was elucidated by carrying out the various characterization methods in the viewpoint of the aggregation of nickel particles and metal-support interactions. The observed superior catalytic performance on CeO2-promoted Ni/MgAl2O4 catalyst at the weight ratio of MgO/Al2O3 of 3/7 seems to be closely related to high dispersion and low aggregation of active metals due to their strong interaction with the MgAl2O4 support and the adjacent contact of Ni and CeO2 species. The CeO2 promoter also plays an important role to suppress particle aggregation by forming an appropriate interaction of NiO–CeO2 as well as Ni–MgAl2O4 with the concomitant enhancement of mobile oxygen content.  相似文献   

7.
Two types of CeO2-modified Ni/Al2O3 catalysts were prepared by a consecutive impregnation method with different sequences in the impregnation of Ni and CeO2, and their performance in autothermal reforming (ATR) of isooctane was investigated. Catalysts prepared by adding CeO2 prior to the addition of Ni, Ni/CeO2-Al2O3, produced larger amounts of hydrogen than those obtained using catalysts prepared by adding the two components in an opposite sequence, Ni-CeO2/Al2O3. The results of H2 chemisorption and temperature-programmed reduction revealed that added CeO2 increased the dispersion of the Ni species on Al2O3 and suppressed the formation of NiAl2O4 in the catalyst such that large amounts of Ni species were present as NiO, the active species for the ATR. The elemental and thermogravimetric analyses of deactivated catalysts indicated that Ni/CeO2-Al2O3, which showed a longer lifetime than Ni-CeO2/Al2O3, contained lesser amounts and different types of coke on the surface.  相似文献   

8.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

9.
An Al2O3-ZrO2 xerogel (AZ-SG) was prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/AZ-SG catalyst was then prepared by an impregnation method, and was applied to hydrogen production by steam reforming of LNG. A nickel catalyst supported on commercial alumina (A-C) was also prepared (Ni/A-C) for comparison. The hydroxyl-rich surface of the AZ-SG support increased the dispersion of nickel species on the support during the calcination step. The formation of a surface nickel aluminate-like phase in the Ni/AZ-SG catalyst greatly enhanced the reducibility of the Ni/AZ-SG catalyst. The ZrO2 in the AZ-SG support increased the adsorption of steam onto the support and the subsequent spillover of steam from the support to the active nickel sites in the Ni/AZ-SG catalyst. Both the high surface area and the well-developed mesoporosity of the Ni/AZ-SG catalyst improved the gasification of adsorbed surface hydrocarbons in the reaction. In the steam reforming of LNG, the Ni/AZ-SG catalyst showed a better catalytic performance than the Ni/A-C catalyst. Moreover, the Ni/AZ-SG catalyst showed strong resistance toward catalyst deactivation.  相似文献   

10.
CO2 reforming of methane was studied over modified Ni/Al2O3 catalysts. The metal modifiers were Co, Cu, Zr, Mn, Mo, Ti, Ag and Sn. Relative to unmodified Ni/Al2O3, catalysts modified with Co, Cu and Zr showed slightly improved activity, while other promoters reduced the activity of CO2 reforming. Mn-promoted catalyst showed a remarkable reduction in coke deposition, while entailing only a small reduction in catalytic activity compared to unmodified catalyst. The catalysts prepared at high calcination temperatures showed higher activity than those prepared at low calcination temperature. The Mn-promoted catalyst showed very low coke deposition even in the absence of diluent gas and the activity changed only slightly during 100 h operation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
An investigation was made using a continuous fixed bed reactor to understand the influence of carbon deposition obtained under different conditions on CH4-CO2 reforming. Thermogravimetry (TG) and X-ray diffraction (XRD) were employed to study the characteristics of carbon deposition. It was found that the carbonaceous catalyst is an efficient catalyst in methane decomposition and CH4-CO2 reforming. The trend of methane decomposition at lower temperatures is similar to that at higher temperatures. The methane conversion is high during the initial of stage of the reaction, and then decays to a relatively fixed value after about 30 min. With temperature increase, the methane decomposition rate increases quickly. The reaction temperature has significant influence on methane decomposition, whereas the carbon deposition does not affect methane decomposition significantly. Different types of carbon deposition were formed at different methane decomposition reaction temperatures. The carbon deposition Type I generated at 900°C has a minor effect on CH4-CO2 reforming and it easily reacts with carbon dioxide, but the carbon deposition Type II generated at 1000°C and 1100°C clearly inhibits CH4-CO2 reforming and it is difficult to react with carbon dioxide. The results of XRD showed that some graphite structures were found in carbon deposition Type II.  相似文献   

12.
Ni(x)/Al2O3 (x=wt%) catalysts with Ni loadings of 5–25 wt% were prepared via a wet impregnation method on an γ-Al2O3 support and subsequently applied in the reductive amination of ethanol to ethylamines. Among the various catalysts prepared, Ni(10)/Al2O3 exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the highest catalytic performance. To reveal the effects of reaction parameters, a reductive amination process was performed by varying the reaction temperature (T), weight hourly space velocity (WHSV), and NH3 and H2 partial pressures in the reactions. In addition, on/off experiments for NH3 and H2 were also carried out. In the absence of NH3 in the reactant stream, the ethanol conversion and selectivities towards the different ethylamine products were significantly reduced, while the selectivity to ethylene was dominant due to the dehydration of ethanol. In contrast, in the absence of H2, the selectivity to acetonitrile significantly increased due to dehydrogenation of the imine intermediate. Although a small amount of catalyst deactivation was observed in the conversion of ethanol up to 10 h on stream due to the formation of nickel nitride, the Ni(10)/Al2O3 catalyst exhibited stable catalytic performance over 90 h under the optimized reaction conditions (i.e., T=190 °C, WHSV=0.9 h?1, and EtOH/NH3/H2 molar ratio=1/1/6).  相似文献   

13.
The effect of preparation method on the catalytic performance of V-promoted Ni/Al2O3 catalysts for synthetic natural gas (SNG) production via CO methanation has been investigated. The Ni-V/Al2O3 catalysts were prepared by co-impregnation (CI) method, deposition precipitation (DP) method as well as two sequential impregnation (SI) methods with different impregnation sequence. Among the prepared catalysts, the one prepared by CI method exhibited the best catalytic performance due to its largest H2 uptake and highest metallic Ni dispersion. In a 91h-lifetime test, this catalyst showed high stability at high temperature and weight hourly space velocity. This work demonstrates that the catalytic performance of the V-promoted Ni/Al2O3 catalysts can be improved by carefully controlling the preparation method/conditions.  相似文献   

14.
Ni and Pt catalysts supported on α-Al2O3, α-Al2O3-ZrO2 and ZrO2 were studied in the dry reforming of methane to produce synthesis gas. All catalytic systems presented well activity levels with TOF (s−1) values between 1 and 3, being Ni based catalysts more active than Pt based catalysts. The selectivity measured at 650 °C, expressed by the molar ratio H2/CO reached values near to 1. Concerning stability, Pt/ZrO2, Pt/α-Al2O3-ZrO2 and Ni/α-Al2O3-ZrO2 systems clearly show lower deactivation levels than Ni/ZrO2 and Ni or Pt catalysts supported on α-Al2O3. The lowest deactivation levels observed in Ni and Pt supported on α-Al2O3-ZrO2, compared with Ni and Pt supported on α-Al2O3 can be explained by an inhibition of reactions leading to carbon deposition in systems having ZrO2. These results suggest that ZrO2 promotes the gasification of adsorbed intermediates, which are precursors of carbon formation and responsible for the main deactivation mechanism in dry reforming reaction.  相似文献   

15.
A co-precipitation method was employed to prepare Ni/Al2O3-ZrO2, Co/Al2 O3-ZrO2 and Ni-Co/Al2O3-ZrO2 catalysts. Their properties were characterized by N2 adsorption (BET), thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), temperature-programmed desorption (CO2-TPD), and temperature-programmed surface reaction (CH4-TPSR and CO2-TPSR). Ni-Co/Al2O3-ZrO2 bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO2 adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO2 adsorption sites (C + CO2 = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH4-CO2-TPSR, there were 80.9% and 81.5% higher CH4 and CO2 conversion over Ni-Co/Al2O3-ZrO2 catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al2O3-ZrO2 catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.  相似文献   

16.
A nickel (Ni) nanoparticle catalyst, supported on 4‐channel α‐Al2O3 hollow fibers, was synthesized by atomic layer deposition (ALD). Highly dispersed Ni nanoparticles were successfully deposited on the outside surfaces and the inside porous structures of hollow fibers. The catalyst was employed to catalyze the dry reforming of methane (DRM) reaction and showed a methane reforming rate of 2040 Lh?1gNi?1 at 800°C. NiAl2O4 spinel was formed when Ni nanoparticles were deposited on alpha‐alumina substrates by ALD, which enhanced the Ni‐support interaction. Different cycles (two, five, and ten) of Al2O3 ALD films were applied on the Ni/hollow fiber catalysts to further improve the interaction between the Ni nanoparticles and the hollow fiber support. Both the catalyst activity and stability were improved with the deposition of Al2O3 ALD films. Among the Al2O3 ALD coated catalysts, the catalyst with five cycles of Al2O3 ALD showed the best performance. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2625–2631, 2018  相似文献   

17.
A Cu/ZnO/Al2O3 nanocatalyst was applied for hydrogen production via steam reforming of methanol in a fixed‐bed reactor. Modified forms of the catalyst were prepared by adding small amounts of Ba, Zr, and Ce oxides. The catalysts were characterized by means of N2 adsorption‐desorption, X‐ray diffraction, and scanning electron microscope techniques. Full factorial design was used to optimize the required number of experiments and evaluate the catalytic activity in a fixed‐bed reactor. The oxide additives reduced the production of carbon monoxide and increased the selectivity of carbon dioxide as well as the yield of hydrogen production. Among the studied catalysts, the Cu/ZnO/Al2O3/CeO2/ZrO2 catalyst presented the best performance.  相似文献   

18.
Hydrogen production from steam reforming of acetic acid was investigated over Ni/La2O3-ZrO2 catalyst. A series of Ni/La2O3-ZrO2 catalysts were synthesized by sol-gel method coupled with wet impregnation, which was characterized by XRD, BET, TEM, EDS, TG, SEM and TPR. Catalytic activity of Ni/La2O3-ZrO2 was evaluated by steam reforming of acetic acid at the temperature range of 550-750 °C. The tetragonal phase La0.1Zr0.9O1.95 is formed through the doping of La2O3 into the ZrO2 lattice and nickel species are highly dispersed on the support with high specific surface area. H2 yield and CO2 yield of Ni/La2O3-ZrO2 catalyst with 15%wt Ni reaches 89.27% and 80.41% at 600 °C, respectively, which is attributed to high BET surface area and sufficient Ni active sites in strong interaction with the support. 15%wt Ni supported on La2O3-ZrO2 catalyst maintains relatively stable catalytic activities for a period of 20 h.  相似文献   

19.
Ni/Al2O3 and Ni/Al2O3–ZrO2 nanocatalysts synthesized via impregnation and treated with non-thermal plasma were investigated in dry reforming of methane. The results showed that plasma treatment produces highly dispersed nanoparticles with a high surface area. Strong interaction between active phase and support particles in plasma-treated catalysts can be concluded based on XRD and XPS results. Smaller Ni particles with narrow particle size distribution were observed in plasma-treated Ni/Al2O3–ZrO2 nanocatalyst. The catalytic activity of plasma-treated Ni/Al2O3–ZrO2 was higher than that of conventional catalyst, resulting in operating conditions with considerably lower temperatures. Long reaction times confirmed the stability of the plasma-treated Ni/Al2O3–ZrO2 nanocatalyst.  相似文献   

20.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号