首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
We characterized the genomic region corresponding to the human ceruloplasmin cDNA previously reported. Using PCR-direct sequencing methods, we determined precise intron/exon boundaries and intron-exon composition of the gene in the region. The gene region spanned about 50 kb and was composed of 19 exons and 18 introns. The lengths of exons and introns range from 107 to over 267 bp and from 0.44 to 10.0 kb, respectively. The translation initiation codon and the termination codon were located in exons 1 and 19, respectively. The nucleotide sequences of the introns were also determined in the region around the intron/exon boundaries for 24-220 bp. All the sequences around the intron/exon boundaries were consistent with the 5' and 3' consensus sequences for splice junctions of transcribed genes. Putative lariat sequences were identified between -17 and -42 nucleotides from the 3' splice junction for all 18 introns.  相似文献   

2.
3.
4.
5.
The cDNA for the mouse bone morphogenetic protein type II receptor (BMPR-II) was isolated using the human counterpart as a probe and its genomic structure was determined. The cDNA encodes a protein of 1,038 amino acids with a single transmembrane domain, a serine/threonine kinase domain, and a long carboxy-terminal tail. The overall amino acid sequence identity between the mouse and the human BMPR-II is 96.6%. mRNA is widely distributed in various adult tissues. The gene is encoded by 13 exons spanning over 80 kb. Two large introns (intron 1 and 3) contribute to the majority of the gene size, as in the mouse activin type II receptor gene. The intron/exon boundaries were sequenced. The results suggest that alternative splicing can yield a shorter form of BMPR-II of 530 amino acids, as reported previously. Knowledge of the structure of the BMPR-II gene is essential for the understanding of the role of bone morphogenetic proteins in the developmental and physiological processes of animals.  相似文献   

6.
Propionyl-CoA carboxylase (PCC) is a mitochondrial biotin-dependent enzyme composed of an equal number of alpha and beta subunits. Mutations in the PCCA (alpha subunit) or PCCB (beta subunit) gene can cause the inherited metabolic disease propionic acidemia (PA), which can be life threatening in the neonatal period. Lack of data on the genomic structure of PCCB has been a significant impediment to full characterization of PCCB mutant chromosomes. In this study, we describe the genomic organization of the coding sequence of the human PCCB gene and the characterization of mutations causing PA in a total of 29 unrelated patients-21 from Spain and 8 from Latin America. The implementation of long-distance PCR has allowed us to amplify the regions encompassing the exon/intron boundaries and all the exons. The gene consists of 15 exons of 57-183 bp in size. All splice sites are consistent with the gt/ag rule. The availability of the intron sequences flanking each exon has provided the basis for implementation of screening for mutations in the PCCB gene. A total of 56/58 mutant chromosomes studied have been defined, with a total of 16 different mutations detected. The mutation spectrum includes one insertion/deletion, two insertions, 10 missense mutations, one nonsense mutation, and two splicing defects. Thirteen of these mutations correspond to those not described yet in other populations. The mutation profile found in the chromosomes from the Latin American patients basically resembles that of the Spanish patients.  相似文献   

7.
8.
We investigated a Japanese patient with protein 4.2 deficiency. SDS-PAGE showed a complete deficiency of protein 4.2, while Western blot analysis revealed a marked decrease in the amount of protein 4.2, and the existence of a doublet of 74 and 72 kDa bands. Direct sequencing and dot-blot hybridization with allele-specific oligonucleotide probes indicated that the proband was compound heterozygous for a missense mutation in codon 142 with Ala-->Thr (GCT-->ACT) and a single nucleotide substitution (G-->A) of the first base of intron 6 (G-->A) of the protein 4.2 gene. The former is the commonest mutation observed in cases of protein 4.2 deficiency, whereas the latter is a novel mutation, located within the consensus sequence of the 5' splicing site (AGGU) (Protein 4.2Notame). RT-PCR analysis using total RNA isolated from reticulocytes of the proband revealed that the intron 6 donor site mutation causes an abnormal splicing; exon 6 is spliced out with intron 6. The abnormal mRNA has a premature termination codon, as the result of a frameshift, and this instability may lead to degradation. Thus, there is a close relation between this mutation and the molecular pathogenesis of protein 4.2 deficiency.  相似文献   

9.
Protein S is a protein C-dependent and independent inhibitor of the coagulation cascade. Deficiency of protein S is an established risk factor for venous thromboembolism. We have used a strategy of specific amplification of the coding regions and intron/exon boundaries of the active protein S gene (PROS1) and direct single-strand solid phase sequencing, to seek mutations in 35 individuals with phenotypic protein S deficiency. Nineteen point mutations (16 novel) in 19 probands (or relatives of probands) with venous thromboembolism are reported here. Fifteen of the 19 mutations were expected to be causal and included 10 missense mutations (Lys9Glu, Glu26Ala, Gly54Glu, Cys145Tyr, Cys200Ser, Ser283Pro, Gly340Asp, Cys408Ser, Ser460Pro, and Cys625Arg). Three of the 15 mutations resulted in premature stop codons (delete T 635 producing a stop codon at position 126, Lys368stop and Tyr595stop) and two were at intron/exon boundaries (+1 G to A in intron d and +3 A to C in intron j). Of the remaining four mutations, three were within intronic sequence and one was a silent mutation within the coding region and did not alter amino acid composition. In two of the 10 missense mutations, reduced plasma protein S activity compared with antigen level suggested the presence of variant (type II) protein S.  相似文献   

10.
Mutations of the transforming growth factor-beta type II receptor (TGF-beta RII) gene have been detected in several human cancers. However, mutation analysis of coding sequences of TGF-beta RII in gastric carcinomas has not yet been fully elucidated. We performed PCR-SSCP analysis and direct DNA sequencing of the entire coding region of TGF- RII in 38 human sporadic gastric cancers and 8 gastric cancer cell lines. Mutations of the TGF-beta RII were detected in two tumors and three cell lines. Two tumors had one base deletion in the polyadenine tract in exon 3, the cystein-rich extracellular domain. Three cell lines had a silent mutation in the kinase domain located in exon 4. Polymorphisms were detected in introns 2 and 3. An a/g polymorphism was observed at the seventh base in intron 2 and an a/t polymorphism was observed at the fourth to last base in intron 3. There were no mutations in exons 1, 2, 5, 6 and 7. These results indicate that the polyadenine tract in the TGF-beta RII is a mutational hot spot in human gastric cancer. However, these results also suggest that mutations of the gene are rare events in human sporadic gastric cancer.  相似文献   

11.
The intron sequences of the human L-type pyruvate kinase gene (PKLR) were determined by using primers selected from the known cDNA sequence. Oligonucleotide primers for these determined intron sequences were used to sequence the exons. When this technique was applied to the DNA of 10 unrelated patients with pyruvate kinase deficiency, the following eight different mutations in the coding region were detected: del391-393, A401, C464, G721, A1076, T1456, T1484, A1529. The A1529 mutation was found repeatedly in unrelated individuals, even in the homozygous state. The context with respect to a polymorphism at nt 1705 was compatible with a single origin for this mutation, and it may represent a balanced polymorphism. In normal subjects, five differences from the published cDNA sequence were documented.  相似文献   

12.
Dihydropyrimidine dehydrogenase (DPD) is responsible for the breakdown of the widely used antineoplastic agent 5-fluorouracil (5-FU), thereby limiting the efficacy of the therapy. It has been suggested that patients suffering from 5-FU toxicities due to a low activity of DPD are genotypically heterozygous for a mutant allele of the gene encoding DPD. In this study we investigated the cDNA and a genomic region of the DPD gene of a cancer patient experiencing severe toxicity following 5-FU treatment for the presence of mutations. Although normal activity of DPD was observed in fibroblasts, the DPD activity in leucocytes of the cancer patient proved to be in the heterozygous range. Analysis of the DPD cDNA showed heterozygosity for a 165bp deletion that results from exon skipping. Sequence analysis of the genomic region encompassing the skipped exon showed that the tumour patient was heterozygous for a G-->A point mutation in the invariant GT splice donor sequence in the intron downstream of the skipped exon. So far, the G-->A point mutation has also been found in 8 out of 11 patients suffering from a complete deficiency of DPD. Considering the frequent use of 5-FU in the treatment of cancer patients, the severe 5-FU-related toxicities in patients with a low activity of DPD and the high frequency of the G-->A mutation in DPD deficient patients, analysis of the DPD activity and screening for the G-->A mutation should be routinely carried out prior to the start of the treatment with 5-FU.  相似文献   

13.
We report studies of two unrelated Japanese patients with 17alpha-hydroxylase deficiency caused by mutations of the 17alpha-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17alpha-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient's mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17alpha-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation.  相似文献   

14.
We have isolated and characterized cDNA and genomic clones containing the coding region for the mouse gamma-glutamyl transpeptidase (GGT). The sequences of the full-length cDNAs for three of the seven known mouse Ggt RNAs (types I, II and III) were determined and found to be identical in the coding region. Comparisons of the deduced amino-acid sequence of mouse GGT with that of rat and human reveal 95 and 79% overall identities, respectively. The mouse Ggt gene has 12 coding exon and spans approx. 12 kb. We have also re-analyzed rat genomic Ggt clones previously isolated by us and found that the rat and mouse genes share the same intron/exon boundaries. Our findings are of interest because they define the structure of the mouse and rat Ggt genes and will allow comparison with human GGT genes which, recent findings suggest, have diverged substantially from rodents.  相似文献   

15.
16.
Multiple carboxylases deficiency, a recently identified metabolic disease in infants, can be cured by the administration of biotine, a cofactor of the carboxylases: pyruvate, propionyl coenzyme A (CoA), methylcrotonyl CoA, and acetyl CoA. The disorder presents as alopecia, associated with chronic candidosis, psychomotor retardation, and frequent episodes of ketoacidosis coma which responded to biotine treatment. Biological signs, related to the deficiency of the individual enzymes, are observed as hyperlactacidemia, propionic aciduria, and methylcrotonylglycinuria. The metabolic basis of this vitamin-dependent size is still obscure, but the research stimulated by this new disease should clarify the still poorly understood physiological role of this vitamin in humans.  相似文献   

17.
18.
Although the role of introns in eucaryotic nuclear genes has been much debated, it remains underinvestigated in fungi. The AS1 gene of Podospora anserina contains three introns and encodes a ribosomal protein (S12) belonging to the well-conserved bacterial S19 family. We attempted to complement the highly pleiotropic mutation AS1-4 with a cDNA encoding the homologous human (S15) protein (rig gene) under the control of the AS1 promoter. In a control experiment, the AS1+ cDNA was unable to complement fully the AS1-4 mutation. It was assumed that the AS1 cDNA was not well expressed and that the AS1 gene needed intron(s) to be efficiently expressed. Addition of the first intron of the AS1 gene to the AS1 and rig cDNAs did indeed allow complementation of all the phenotypic defects of the AS1-4 mutation. These data lead to two main conclusions. First, the human S15 ribosomal protein is functional in Podospora. Second, full expression of the Podospora AS1 gene requires at least one intron.  相似文献   

19.
Ataxia telangiectasia (AT) is an autosomal recessive gene disorder, and ATM, a housekeeping gene, has been identified as the gene responsible for AT. Recently we found that another housekeeping gene, NPAT, is located upstream of ATM on human chromosome 11. The two housekeeping genes are transcribed in opposite directions and share a 0.5-kb 5' flanking sequence. The structure and organization of NPAT were determined by direct sequencing of cosmid clones carrying the gene and by application of the long and accurate (LA)-PCR method to amplify regions encompassing the exon/intron boundaries and all of the exons. The gene spans at least 44 kb and consists of 18 exons and 17 introns. It has been suggested that AT heterozygotes have an increased risk of developing cancer, especially breast cancer in women. Frequently, loss of heterozygosity at loci on 11q22-q24 has been observed in DNA isolated from tumors of the breast, uterine cervix, and colon, perhaps suggesting the location of a tumor suppressor gene in 11q22-q24. For investigation of the role of NPAT in AT and these tumors with allelic loss of 11q22-q24, appropriate primer sequences and PCR conditions for amplification of all the NPAT exons from genomic DNA were determined. We previously reported that no recombinations are found among Atm, Npat, and Acat1 (acetoacetyl-CoA thiolase) loci as determined by fine genetic linkage mapping of the mouse AT region. The results of the LA-PCR analysis using NPAT- and ACAT-specific primers and human genomic DNA allowed us to map ACAT 12 kb centromeric to NPAT.  相似文献   

20.
To date, three different structural gene mutations have been identified in patients with carbonic anhydrase II deficiency (osteopetrosis with renal tubular acidosis and cerebral calcification). These include a missense mutation (H107Y) in two families, a splice junction mutation in intron 5 in one of these families, and a splice junction mutation in intron 2 for which many Arabic patients are homozygous. We report here a novel mutation for which carbonic anhydrase II-deficient patients from seven unrelated Hispanic families were found to be homozygous. The proband was a 2 1/2-year-old Hispanic girl of Puerto Rican ancestry who was unique clinically, in that she had no evidence of renal tubular acidosis, even though she did have osteopetrosis, developmental delay, and cerebral calcification. She proved to be homozygous for a single-base deletion in the coding region of exon 7 that produces a frameshift that changes the next 12 amino acids before leading to chain termination and that also introduces a new MaeIII restriction site. The 27-kD truncated enzyme produced when the mutant cDNA was expressed in COS cells was enzymatically inactive, present mainly in insoluble aggregates, and detectable immunologically at only 5% the level of the 29-kD normal carbonic anhydrase II expressed from the wild-type cDNA. Metabolic labeling revealed that this 27-kD mutant protein has an accelerated rate of degradation. Six subsequent Hispanic patients of Caribbean ancestry, all of whom had osteopetrosis and renal tubular acidosis but who varied widely in clinical severity, were found to be homozygous for the same mutation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号