首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the top-down fabrication techniques for silicon-based electronic materials have reached the scale of molecular lengths, researchers have been investigating nanostructured materials to build electronics from individual molecules. Researchers have directed extensive experimental and theoretical efforts toward building functional optoelectronic devices using individual organic molecules and fabricating metal-molecule junctions. Although this method has many advantages, its limitations lead to large disagreement between experimental and theoretical results. This Account describes a new method to create molecular electronic devices, covalently bridging a gap in a single-walled carbon nanotube (SWNT) with an electrically functional molecule. First, we introduce a molecular-scale gap into a nanotube by precise oxidative cutting through a lithographic mask. Now functionalized with carboxylic acids, the ends of the cleaved carbon nanotubes are reconnected with conjugated diamines to give robust diamides. The molecular electronic devices prepared in this fashion can withstand and respond to large environmental changes based on the functional groups in the molecules. For example, with oligoanilines as the molecular bridge, the conductance of the device is sensitive to pH. Similarly, using diarylethylenes as the bridge provides devices that can reversibly switch between conjugated and nonconjugated states. The molecular bridge can perform the dual task of carrying electrical current and sensing/recognition through biological events such as protein/substrate binding and DNA hybridization. The devices based on DNA can measure the difference in electrical properties of complementary and mismatched strands. A well-matched duplex DNA 15-mer in the gap exhibits a 300-fold lower resistance than a duplex with a GT or CA mismatch. This system provides an ultrasensitive way to detect single-nucleotide polymorphisms at the individual molecule level. Restriction enzymes can cleave certain cDNA strands assembled between the SWNT electrodes; therefore, these strands maintain their native conformation when bridging the ends of the SWNTs. This methodology for creating novel molecular circuits forges both literal and figurative connections between chemistry, physics, materials science, and biology and promises a new generation of integrated multifunctional sensors and devices.  相似文献   

2.
3.
In this work, high-aligned single-walled carbon nanotube (SWCNT) forest have been grown using a high-density plasma chemical vapor deposition technique (at room temperature) and patterned into micro-structures by photolithographic techniques, that are commonly used for silicon integrated circuit fabrication. The SWCNTs were obtained using pure methane plasma and iron as precursor material (seed). For the growth carbon SWCNT forest the process pressure was 15 mTorr, the RF power was 250 W and the total time of the deposition process was 3 h. The micropatterning processes of the SWCNT forest included conventional photolithography and magnetron sputtering for growing an iron layer (precursor material). In this situation, the iron layer is patterned and high-aligned SWCNTs are grown in the where iron is present, and DLC is formed in the regions where the iron precursor is not present. The results can be proven by Scanning Electronic Microscopy and Raman Spectroscopy. Thus, it is possible to fabricate SWCNT forest-based electronic and optoelectronic devices.  相似文献   

4.
Wei L  Tezuka N  Umeyama T  Imahori H  Chen Y 《Nanoscale》2011,3(4):1845-1849
Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.  相似文献   

5.
6.
A novel method for fabrication of vertically aligned single-walled carbon nanotubes (SWCNTs) on indium-tin oxide glass substrates modified with self-assembly monolayer has been developed by using a supporting frame composed of a monolayer of monodispersed silica beads and an alternating current electric field. We have found that SWCNTs can be implanted into the interstices of the colloidal superlattices, which function as supporting scaffold to prevent the SWCNTs from falling down and maintain the SWCNTs at low density. As a result, this vertically aligned SWCNT assembly exhibits enhanced field emission.  相似文献   

7.
The catalytic effect on the Y-shaped single-walled carbon nanotubes (Y-SWNTs) branching is investigated. The formation of Y-shaped branches is found to be dependent on the catalysts composition, which can be correlated to the Gibbs free energy of metal carbide formation. Easier carbide formers, like Mo or Zr, have a strong tendency to attach to the sidewall of SWNTs, enhancing the degree of carbon nanotube branching. The electrical conductance of the Y-SWNTs demonstrated rectification characteristics at room temperature, which is attributed to the Schottky barrier formed at the junction position. The Y-SWNTs can be used as a building block for future nanoelectronic, sensor and composite.  相似文献   

8.
Well-coated single-walled carbon nanotube (SWNT) with polyaniline (PANI) composite electrodes with good uniformity for electrochemical capacitors are prepared by the polymerization of aniline containing well-dissolved SWNTs. The capacitance properties are investigated with cyclic voltammetry, charge-discharge tests and ac impedance spectroscopy. The composite electrode shows much higher specific capacitance, better power characteristics and is more promising for application in capacitor than pure PANI electrode. The effect and role of SWNT in the composite electrode are also discussed in detail.  相似文献   

9.
Double-walled carbon nanotubes (DWCNTs) were selectively functionalised by treatment with concentrated nitric and sulphuric acid, resulting in carboxylated outer and pristine inner tube constituents. The functionalised DWCNTs were then incorporated into two types of pre-existing carbon nanotube (CNT) electrode platforms, and the performance of each was compared to single-walled carbon nanotubes (SWCNTs). To make the CNT electrode platforms DWCNTs were covalently bound to fluorinated tin oxide glass (FTO) or electrografted aminophenyl tether layers on silicon. The performance of single- compared to double-walled CNTs on FTO or silicon supported electrodes was then determined through electrochemical methods, using the redox probes, ferrocene and ruthenium hexaamine, respectively. The DWCNTs showed an improved heterogeneous rate constant. This improvement was attributed to the protection of the electronic properties of the inner wall of the DWCNT during the chemical modification and suggests that DWCNTs may offer a useful alternative to SWCNTs in future electronic devices.  相似文献   

10.
Single-walled carbon nanotube paper was surface oxidized with gaseous oxygen atoms produced by low-pressure: (1) vacuum UV (λ?=?104.8 and 106.7?nm) photo-oxidation and (2) downstream microwave plasma discharge of an Ar–O2 mixture. X-ray photoelectron spectroscopy was used to detect the carbon- and oxygen-containing functional groups in the top 2–5?nm of the sample’s surface. Both methods produced a saturation level of ca. 12 at.% oxygen with the predominant formation of the epoxide/ether groups.  相似文献   

11.
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or dimethylformamide (DMF) by sonication treatments without the addition of surfactants or polymers. Carbon nanotube sheets (buckypapers) were prepared by vacuum filtration of the functionalized SWCNT dispersions. The electrical conductivity, textural properties, and processability of the functionalized buckypapers were studied in terms of SWCNT purity, functionalization, and assembling conditions. Carboxylated buckypapers demonstrated very low specific surface areas (< 1 m2/g) and roughness factor (Ra = 14 nm), while aminated and fluorinated buckypapers exhibited roughness factors of around 70 nm and specific surface areas of 160-180 m2/g. Electrical conductivity for carboxylated buckypapers was higher than for as-grown SWCNTs, but for aminated and fluorinated SWCNTs it was lower than for as-grown SWCNTs. This could be interpreted as a chemical inhibition of metallic SWCNTs due to the specificity of the diazonium salts reaction used to prepare the aminated and fluorinated SWCNTs. The utilization of high purity as-grown SWCNTs positively influenced the mechanical characteristics and the electrical conductivity of functionalized buckypapers.  相似文献   

12.
Hisashi Sugime 《Carbon》2010,48(8):2203-882
Millimeter-tall vertically-aligned carbon nanotubes (VA-CNTs) were grown from ethanol under ambient pressure by Co-catalyzed chemical vapor deposition (CVD), with systematic optimization of the CVD temperature and catalytic conditions using combinatorial catalyst libraries. We investigated the use of both aluminum oxide and silicon oxide as underlayers for the Co catalyst and found that VA-CNTs grew to millimeter heights in 15-30 min when the pyrolysis of ethanol was carried out at high temperatures (?850 °C) and long residence times (?10 s). Thick Co catalytic layers (?1.3 nm) produced (sub)millimeter-tall multi-walled VA-CNTs on both the aluminum oxide and silicon oxide underlayers. However, thin Co catalytic layers (0.62-1.0 nm) produced (sub)millimeter-tall VA-CNTs, which consisted mainly of single-walled CNTs, only on the aluminum oxide underlayers. Stripe patterns were found in the VA-CNTs near the substrate on both aluminum oxide and silicon oxide, indicating some instability prior to growth termination. The possible roles of aluminum oxide in growing millimeter-tall single-walled VA-CNTs were discussed.  相似文献   

13.
Well-dispersed single-walled carbon nanotube/polyaniline composite films   总被引:1,自引:0,他引:1  
Ji-Er Huang 《Carbon》2003,41(14):2731-2736
Single-walled carbon nanotube (SWNT)/polyaniline (PANI) composite films with good uniformity and dispersion were prepared by electrochemical polymerization of aniline containing well-dissolved SWNTs. The results of atomic force microscopy (AFM) and UV-Vis adsorption spectroscopy show that aniline can be used to solubilize SWNTs via formation of donor-acceptor complexes. The electrochemical deposition of SWNT-aniline solutions have been investigated by cyclic voltammetry. The results show that SWNT-based aniline solutions exhibit a drastic increase in peak current within the potential scanning region. The doping effect of SWNTs on PANI films was investigated by electrochemistry and FTIR spectroscopy. The results indicate that the enhanced electroactivity and conductivity of the SWNT/PANI composite films may be due to the strong interaction between SWNTs and PANI, which facilitates the effective degree of electron delocalization.  相似文献   

14.
Anisotropic electrical conduction measurements have been carried out for thin films of vertically-aligned single-walled carbon nanotubes (VA-SWCNTs) grown by an alcohol catalytic CVD process. Combined with controlled synthesis and structure characterization by optical spectroscopy, the influence of the aligned structure on the electrical conduction has been identified. The out-of-plane conductivity of the films was measured to be about 0.56 S/mm, independently of the film thickness. On the other hand, the in-plane conductivity was found to be more than an order of magnitude smaller, which gives rise to highly anisotropic electrical conduction, reflecting the high degree of alignment in the VA-SWCNT films. The in-plane conductivity decreases with increasing film thickness, in contrast to the film of random SWCNT networks, which exhibit thickness-independent in-plane resistance. The thickness-dependent in-plane conductivity can be expounded by a growth model of vertically aligned SWCNT films in which a thin layer of nanotube networks form on top of films at the initial stage of the growth. Such electrical anisotropy of VA-SWCNT films can be useful in miniaturized sensing devices.  相似文献   

15.
16.
Wu B  Geng D  Liu Y 《Nanoscale》2011,3(5):2074-2085
The nature of the mixed electronic type metallic (M-) and semiconducting (S-) single-walled carbon nanotubes (SWNTs) synthesized by current methods has posed a key challenge for the development of high performance SWNT-based electronic devices. The precise measurements of M- to S-SWNT ratio in as-grown or separated samples are of paramount importance for the controlled synthesis, separation and the realization of various applications. The objective of this review is to provide comprehensive overview of the progress achieved so far for measuring the M/S ratio both on individual and collective levels of SWNT states. We begin with a brief introduction of SWNT structures/properties and discussion of the problems and difficulties associated with precise measurement of the M/S ratio, and then introduce the principles for obtaining distinguished signals from M-and S-SWNTs. These techniques are classified into different groups based either on the single/ensemble detection of SWNT samples or on the principles of techniques themselves. We then present the M/S ratio evaluation results of these methods, with emphasis on scanning probe microscopy (SPM)-based detection techniques. Finally, the prospects of precise and large-scale measurement of M/S ratio in achieving controlled synthesis and understanding growth mechanism of SWNTs are discussed.  相似文献   

17.
Albert G. Nasibulin  Hua Jiang 《Carbon》2005,43(11):2251-2257
Single-walled carbon nanotubes (CNTs) were synthesised at different conditions by a novel aerosol method based on the introduction of pre-formed iron catalyst particles into conditions leading to CNT formation. The results of statistical measurements of individual CNT dimensions based on high-resolution TEM images showed the effects of the residence time and temperature in the reactor. The ratio between catalyst particle and CNT diameters was close to 1.6 and independent of the experimental conditions, thus revealing an astonishing “universality” in the growth process. A proposed geometric model of heptagon defect formation, which initiates and maintains the CNT growth, allowed us to theoretically explain the phenomenon.  相似文献   

18.
It is known that single-walled carbon nanotubes (SWCNTs) can be functionalized by fluorine gas. Here, we report neutralized fluorine radical detection using a matted sheet of SWCNTs, prepared by alternating current dielectrophoresis. Upon exposure to neutralized radicals containing fluorine atoms in a plasma, as model analytes, the conductance of the SWCNT matt showed fast modulation. The transduction mechanism was investigated by electrical transport measurements, X-ray photoelectron spectroscopy and Raman spectroscopy. Metallic nanotubes were shown to react covalently to the near exclusion of semiconducting species. The selectivity was promoted by the curvature-induced strain of the nanotubes. The results open new opportunities for the detection of fluorine radicals at specific locations inside the reaction zone using a simple, miniaturized carbon nanotube network.  相似文献   

19.
We report an improvement of the mechanical properties of transparent randomly oriented freestanding single-walled carbon nanotube (SWCNT) films by deposition of polymers using a drop casting method and aluminum oxide utilizing an atomic layer deposition (ALD) technique. Due to the thickness increase, the polymer coating resulted in an increase in toughness, however, simultaneously decreasing the ultimate tensile strength. The 100 nm thick SWCNT films ALD-coated with Al2O3 layer revealed significant increase in the ultimate tensile strength from 46 ± 5 to 213 ± 17 and 80 ± 4 to 318 ± 16 MPa depending on the network density, preserving the high level of porosity of the structure.  相似文献   

20.
Hyun Young Jung 《Carbon》2008,46(10):1345-1349
Vertically aligned multi-walled carbon nanotube (MWCNT) arrays were fabricated on an anodic aluminum oxide membrane bonded to a Si wafer. After obtaining a protruding tip for the MWCNTs by etching away some oxide, they were used as electrodes in the fabrication of carbon nanotube field emitters. Long single-walled carbon nanotubes (SWCNTs) were spin coated on the MWCNT arrays of uniform height. Clean SWCNTs were suspended by attaching them to the tips of the vertically aligned MWCNT arrays. The spin coated SWCNTs function as emitters, while the MWCNT arrays function as electrodes. The field emission was greatly improved by coating gold on the MWCNT arrays and annealing at 400 °C. Our field emitter exhibits good field emission properties such as a low turn-on field (1.4 V/μm), high current density (122 mA/cm2), and good stability (55 h for 10% degradation of current density from 400 μA/cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号