首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flexible transparent conductive films (TCFs) are vital to promote the development of flexible and foldable devices including touch panels, displays, organic solar cells, etc. We have prepared a large-area, flexible, and color-neutral single-wall carbon nanotube:sodium dodecylbenzene sulfonate/poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (SWCNT:SDBS/PEDOT:PSS) composite TCF on a poly(ethylene terephthalate) substrate by a spray coating method. The TCF has a sheet resistance of 178 Ω sq−1 with 85% transmittance at 550 nm. The light transmission characteristics of the films can be tuned by changing the mass fraction of SWCNTs. When the mass fraction of SWCNTs is higher than 4 wt.%, the original blue tint of the TCFs has disappeared. More importantly, we find that SDBS may play a more important role than the SWCNT network in improving the electrical conductivity of the films by acting as a secondary dopant of PEDOT:PSS, which is different from the traditional understanding and existing explanation about the conduction mechanism of PEDOT:PSS-based composite films.  相似文献   

2.
The GdBaCuCo0.5Fe0.5O5+δ (GBCCF) layered perovskite oxide was evaluated as novel cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Its electrical conductivity was 9–13 S cm?1 at 650–800 °C in air. The average thermal expansion coefficient (TEC) of GBCCF was 14.4 × 10?6 K?1, which was close to that of the typical electrolyte material. The cathode polarization resistance of GBCCF was 0.650 Ω cm2 at 750 °C and it decreases to 0.118 Ω cm2 when Ce0.9Gd0.1O1.95 (GDC) was added to form a GBCCF–GDC composite cathode. Preliminary results indicated that layered perovskite GBCCF was a promising alternative cathode material for IT-SOFCs.  相似文献   

3.
Single-walled carbon nanotubes (SWCNTs) were dispersed in water with the help of surfactants to achieve high concentration SWCNT ink. SWCNT transparent conducting films (TCFs) were fabricated by rod coating using the SWCNT ink. A combination of two surfactants provided optimal rheological behaviour, which produced uniform films by preventing dewetting and rupture of SWCNTs during drying. The combination led to a dramatic increase of shear viscosities but no change of their wettability. The viscosity of SWCNT ink was controlled by the ratio of two surfactants. The thickness of SWCNT films could be easily varied by controlling both the concentration of SWCNT ink and the size of the wire-wound rod. The produced uniform SWCNT-TCFs treated by nitric acid have a relatively low sheet resistance of ∼80 Ω sq−1 at 80% transmittance. The performance has a wide range of applied interest for touch screen and flexible electronics.  相似文献   

4.
Nanoperovskite oxides, Ba0.2Sr0.8Co0.8Fe0.2O3?δ (BSCF), were synthesized via the co-precipitation method using Ba, Sr, Co, and Fe nitrates as precursors. Next, half cells were fabricated by painting BSCF thin film on Sm0.2Ce0.8Ox (samarium doped ceria, SDC) electrolyte pellets. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) measurements were carried out on the BSCF powders and pellets obtained after sintering at 900 °C. Investigations revealed that single-phase perovskites with cubic structure was obtained in this study. The impedance spectra for BSCF/SDC/BSCF cells were measured to obtain the interfacial area specific resistances (ASR) at several operating temperatures. The lowest values of ASR were found to be 0.19 Ω cm2, 0.14 Ω cm2 0.10 cm2, 0.09 Ω cm2 and 0.07 Ω cm2 at operating temperatures of 600 °C, 650 °C, 700 °C, 750 °C and 800 °C, respectively. The highest conductivity was found for cells sintered at 900 °C with an electrical conductivity of 153 S cm?1 in air at operating temperature of 700 °C.  相似文献   

5.
A perovskite-type (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3?δ (BSGCF) oxide has been investigated as the cathode of intermediate temperature solid oxide fuel cells (IT-SOFCs). Coulometric titration, thermogravimetry analysis, thermal expansion and four-probe DC resistance measurements indicate that the introduction of Gd3+ ions into the A-site of Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) leads to the increase in both oxygen nonstoichiometry at room temperature and electrical conductivity. For example, the conductivity of BSGCF is 148 S cm?1 at 507 °C, over 4 times as large as that of BSCF. Furthermore, the electrochemical activity toward the oxygen reduction reaction is also enhanced by the Gd doping. Impedance spectra conducted on symmetrical half cells show that the interfacial polarization resistance of the BSGCF cathode is 0.171 Ω cm2 at 600 °C, smaller than 0.297 Ω cm2 of the BSCF cathode. A Ni/Sm0.2Ce0.8O1.9 anode-supported single cell based on the BSGCF cathode exhibits a peak power density of 551 mW cm?2 at 600 °C.  相似文献   

6.
We prepared and characterized flexible thermoelectric (TE) materials based on thin films of single-walled carbon nanotube (SWCNT) composites with polyvinylalcohol. While pristine SWCNTs incorporated in a polymer matrix generated a p-type TE material, chemical functionalization of SWCNTs by using polyethyleneimine produced an n-type TE material. TE modules made of both p- and n-type composite were fabricated to demonstrate TE voltage and power generation. A single p–n junction made of two composite strips containing 20 wt.% of SWCNTs generated a high TE voltage of 92 μV per 1 K temperature gradient (ΔT). By combining five electrically connected p–n junctions an output voltage of 25 mV was obtained upon the applying ΔT = 50 K. Furthermore, this module generated a power of 4.5 nW when a load resistance matched the internal module resistance of 30 kΩ. These promising results show the potential of TE energy conversion provided by the SWCNT composite films connected in scalable modules for applications that require light weight and mechanical flexibility.  相似文献   

7.
We report on the use of pulsed KrF-laser irradiation for the in situ reduction of graphene oxide (GO) films under both vacuum and partial hydrogen pressure. By exposing GO films to 500 pulses of a KrF-laser, at a fluence of 10 mJ/cm2, their sheet resistance (Rs) is dramatically reduced from highly insulating (∼1010 Ω/sq) to conductive values of ∼3 kΩ/sq. By increasing the laser fluence, from 10 to 75 mJ/cm2, we were able to identify an optimal fluence around 35 mJ/cm2 that leads to highly conductive films with Rs values as low as 250 Ω/sq and 190 Ω/sq, under vacuum (10−5 Torr) and 50 mTorr of H2, respectively. Raman spectroscopy analyses confirmed the effective reduction of the KrF-laser irradiated GO films through the progressive recovery of the characteristic 2D band of graphene. Furthermore, systematic Fourier-transform infrared spectroscopy analysis has revealed that KrF-laser induced reduction of GO preferentially occurs through photodissociation and removal of carboxyl (COOH) and alcohol (OH) groups. A direct correlation is established between the electrical resistance of photoreduced GO films and their COOH and OH bond densities. The KrF-laser induced reduction of GO films is found to be more efficient under H2 background than under vacuum. It is concluded that our KrF-laser reduced GO films mainly consist of turbostratic graphite built from randomly organized few-layers-graphene building blocks, which contains some residual oxygen atoms and defects. Finally, by monitoring the KrF-laser fluence, it is shown that reduced GO films combining optical transmission as high as ∼80% along with sheet resistance as low as ∼500 Ω/sq can be achieved with this room-temperature and on-substrate process. This makes the laser-based reduction process developed here particularly attractive for photovoltaic hybrid devices using silicon substrates.  相似文献   

8.
《Ceramics International》2016,42(3):4532-4538
The structural, thermal and electrochemical properties of the perovskite-type compound La1−xNdxFe0.5Cr0.5O3 (x=0.10, 0.15, 0.20) are investigated by X-ray diffraction, thermal expansion, thermal diffusion, thermal conductivity and impedance spectroscopy measurements. Rietveld refinement shows that the compounds crystallize with orthorhombic symmetry in the space group Pbnm. The average thermal expansion coefficient decreases as the content of Nd increases. The average coefficient of thermal expansion in the temperature range of 30–850 °C is 10.12×10−6, 9.48×10−6 and 7.51×10−6 °C−1 for samples with x=0.1, 0.15 and 0.2, respectively. Thermogravimetric analyses show small weight gain at high temperatures which correspond to filling up of oxygen vacancies as well as the valence change of the transition metals. The electrical conductivity measured by four-probe method shows that the conductivity increases with the content of Nd; the electrical conductivity at 520 °C is about 4.71×10−3, 6.59×10−3 and 9.62×10−3 S cm−1 for samples with x=0.10, 0.15 and 0.20, respectively. The thermal diffusivity of the samples decreases monotonically as temperature increases. At 600 °C, the thermal diffusivity is 0.00425, 0.00455 and 0.00485 cm2 s−1 for samples with x=0.10, 0.15 and 0.20, respectively. Impedance measurements in symmetrical cell arrangement in air reveal that the polarization resistance decreases from 55 Ω cm−2 to 22.5 Ω cm−2 for increasing temperature from 800 °C to 900 °C, respectively.  相似文献   

9.
CoMgAl layered double hydroxides were prepared as catalysts for the in situ synchronous growth of graphene and single-walled carbon nanotubes (SWCNTs) from methane by chemical vapor deposition. The as-calcined CoMgAl layered double oxide (LDO) flakes served as the template for the deposition of graphene, and Co nanoparticles (NPs) embedded on the LDOs catalyzed the growth of SWCNTs. After the removal of CoMgAl LDO flakes, graphene (G)/SWCNT/Co3O4 hybrids with SWCNTs directly grown on the surface of graphene and 27.3 wt.% Co3O4 NPs encapsulated in graphene layers were available. Further removal of the Co3O4 NPs by a CO2-oxidation assistant purification method induced the formation of G/SWCNT hybrids with a high carbon purity of 98.4 wt.% and a high specific surface area of 807.0 m2/g. The G/SWCNT/Co3O4 hybrids exhibited good electrochemical performance for pseudo-capacitors due to their high Co3O4 concentration and the high electrical conductivity of SWCNTs and graphene. In another aspect, the G/SWCNT hybrids can be used as excellent electrode materials for double-layer capacitors. A high capacity of 98.5 F/gelectrode was obtained at a scan rate of 10 mV/s, 78.2% of which was retained even when the scan rate increased to 500 mV/s.  相似文献   

10.
Lanthanum-based iron- and cobalt-containing perovskite has a high potential as a cathode material because of its high electro-catalytic activity at a relatively low operating temperature in solid oxide fuel cells (SOFCs) (600–800). To enhance the electro-catalytic reduction of oxidants on La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF), Ga doped ceria (Ce0.9Gd0.1O1.95, GDC) supported LSCF (15LSCF/GDC) is successfully fabricated using an impregnation method with a ratio of 15 wt% LSCF and 85 wt% GDC. The cathodic polarization resistances of 15LSCF/GDC are 0.015 Ω cm2, 0.03 Ω cm2, 0.11 Ω cm2, and 0.37 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The simply mixed composite cathode with LSCF and GDC of the same compositions shows 0.05 Ω cm2, 0.2 Ω cm2, 0.56 Ω cm2, and 1.20 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The fuel cell performance of the SOFC with 15LSCF/GDC shows maximum power densities of 1.45 W cm?2, 1.2 W cm?2, and 0.8 W cm?2 at 780 °C, 730 °C, and 680 °C, respectively. GDC supported LSCF (15LSCF/GDC) shows a higher fuel cell performance with small compositions of LSCF due to the extension of triple phase boundaries and effective building of an electronic path.  相似文献   

11.
A conducting polymer, emeraldine form of polyaniline (PANI), reduces silver nitrate to metallic silver. The composites of PANI and silver have been prepared at equimolar proportion of reactants. Seven acids, representing inorganic and organic acids, have been used to protonate PANI. The acids were selected with respect to their chemical indifference or the ability to precipitate or reduce silver(I) ions. The PANI–silver composites differed in the conductivity from 1.7 × 10?6 S cm?1 when PANI phosphate was used as a substrate to 22.8 S cm?1 for PANI hydrochloride at comparable silver contents, 24 and 27 wt.%. The protonation state of PANI in PANI–silver composites was analyzed by FTIR spectroscopy. The composites contained spherical silver nanoparticles of 40–80 nm in size and also macroscopic particles, irrespective of PANI entering the reaction.  相似文献   

12.
In this work, we prepared NH4PO3/MO2 (MSi, Ti) composite materials with various amounts of TiO2 using a sol–gel method, which are potential for application as electrolytes for intermediate temperature fuel cells (150–250 °C). The effect of the amount of TiO2 on the conductivities of the composite was investigated systematically by an impedance spectroscopy within the temperature range of 50–275 °C under different atmospheres. The composite SiTiO10APP (10 mol% TiO2) showed high proton conductivity, 0.001–0.043 S cm?1 at 150–250 °C. The maximum conductivities are 0.043 S cm?1 at 225 °C under humid H2 and 0.0085 S cm?1 at 175 °C under humid air, respectively. A thermogravimetric analysis showed the composite had high thermal stability below 300 °C. Moreover, it was found that the microstructure has significant effect on the conductivity of the composites at higher temperature.  相似文献   

13.
We report a novel resist-assisted dielectrophoresis method for single-walled carbon nanotube (SWCNT) assembly. It provides nanoscale control of the location, density, orientation and shape of individual SWCNTs. Sub-50 nm accuracy and a yield higher than 85% have been achieved. Using the method, we demonstrate suspended-body SWCNT field-effect transistors (FETs) with back-gate and sub-100 nm air-gap lateral-gate configurations. The suspended-body SWCNT FETs show excellent electrical characteristics with Ion/Ioff  107, ultra-low off currents ~10?14 A and small subthreshold swings. The technique contributes to the ultimate solution for bottom-up fabrication of a broad field of CNT-based devices, such as: complementary metal–oxide-semiconductor and nano-electrical–mechanical-system devices for sensing and radio-frequency applications. Moreover, the versatile method could be applied to the assembly of many other promising materials, such as: nanowires and graphene flakes.  相似文献   

14.
NO2 exposure drastically increases the hole concentration on the surface of hydrogen (H)-terminated diamond. When the NO2 gas concentration is higher than 300 ppm, the saturated hole sheet concentration ps stays the same. Therefore, the ps value is regarded as the high limit of the concentration of holes on H-terminated diamond surface, ps,max. In this work, we compared ps,max, mobility μ, and sheet resistance Rs for (100), (110), and (111) H-terminated surfaces of chemical-vapor-deposited single-crystal diamond. On (110), (111), (100) surfaces, the ps,max values are 1.717 × 1014 and 1.512 × 1014 cm 2, and 0.981 × 1014, respectively. This result supports the first-principle calculations: the hole concentration depends on the energy difference between the valence band maximum and the unoccupied orbitals of adsorbent NO2 molecules. We have achieved Rs of 719.3 Ω/sq (ps = 1.456 × 1014 cm 2 and μ = 59.6 cm2 V 1 s 1), the lowest reported so far, on (111) surfaces under 20,000-ppm NO2 atmosphere.  相似文献   

15.
One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 °C) and frequency (100 Hz–1 MHz) dependent dielectric properties and AC conductivity for a range of HA–CaTiO3 (HA–CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics [~upto 10?5  cm)?1] are found to be considerably higher than the corresponding pressureless sintered ceramics [~upto 10?8 cm)?1]. Overall, the results indicate the processing route dependent functional properties of HA–CaTiO3 composites as well as related advantages of spark plasma sintering route.  相似文献   

16.
SiC-Zr2CN composites were fabricated from β-SiC and ZrN powders with 2 vol% equimolar Y2O3-Sc2O3 additives via conventional hot pressing at 2000 °C for 3 h in a nitrogen atmosphere. The electrical and thermal properties of the SiC-Zr2CN composites were investigated as a function of initial ZrN content. Relative densities above 98% were obtained for all samples. The electrical conductivity of Zr2CN composites increased continuously from 3.8 × 103 (Ωm)−1 to 2.3 × 105 (Ωm)−1 with increasing ZrN content from 0 to 35 vol%. In contrast, the thermal conductivity of the composites decreased from 200 W/mK to 81 W/mK with increasing ZrN content from 0 to 35 vol%. Typical electrical and thermal conductivity values of the SiC-Zr2CN composites fabricated from a SiC-10 vol% ZrN mixture were 2.6 × 104 (Ωm)−1 and 168 W/m K, respectively.  相似文献   

17.
Ceria ceramics was obtained from multi-doped nanosized ceria powders prepared by both modified glycine nitrate procedure (MGNP) and self-propagating reaction at room temperature (SPRT). Rare earth elements such as Nd, Sm, Gd, Dy, Y, Yb were used as dopants. The overall mole fraction of dopants was 0.2. One-hour long sintering of powder compacts was performed at 1500 °C in oxygen atmosphere. Phase composition, microstructure and ionic conductivity of sintered samples were analysed. Single-phase ceria was detected in all samples. In general, the increase in the number of dopants improved the ionic conductivity. The samples doped simultaneously with five dopants had the highest ionic conductivity, as evidenced by the impedance measurements. At 450 °C, the conductivity of sample obtained by MGNP was 3.94×10?3 Ω?1 cm?1 whereas the conductivity of sample obtained by SPRT was 2.61×10?3 Ω?1 cm?1. The conductivity activation energy for MGNP and SPRT samples was measured to be 0.348 and 0.385 eV, respectively. Finally, the conductivity decreased as the number of dopants increased to six.  相似文献   

18.
The metal grid and reduced graphene oxide (RGO) are both promising transparent conductive materials for replacing the indium tin oxide (ITO) in flexible optoelectronics. However, the large empty area that exists in the grid together with the relatively high sheet resistance of RGO hinder both the materials for practical applications. In this work, we report for the first time a novel strategy for efficient combination of the metal grid and RGO by using a newly developed room-temperature reduction technique. The obtained RGO/metal grid hybrid films not only overcome the shortcomings of individual components but exhibit enhanced optical and electrical performances (Rs = 18 Ω sq−1 and T = 80%) and excellent flexural endurance. With this hybrid film as the window electrode, a highly flexible electrochromic device with excellent stability and ultra-fast response shorter than 60 ms has been successfully fabricated. Considering its high efficiency, high quality, low cost and large area, the strategy would be particularly useful for economically fabricating various metal grid/RGO films which are quite promising high performance transparent and conductive materials for next generation optoelectronic devices.  相似文献   

19.
Free-standing single-walled carbon nanotube/SnO2 (SWCNT/SnO2) anode paper was prepared by vacuum filtration of SWCNT/SnO2 hybrid material which was synthesized by the polyol method. From field emission scanning electron microscopy and transmission electron microscopy, the CNTs form a three-dimensional nanoporous network, in which ultra-fine SnO2 nanoparticles, which had crystallite sizes of less than 5 nm, were distributed, predominately as groups of nanoparticles on the surfaces of single walled CNT bundles. Electrochemical measurements demonstrated that the anode paper with 34 wt.% SnO2 had excellent cyclic retention, with the high specific capacity of 454 mAh g?1 beyond 100 cycles at a current density of 25 mA g?1, much higher than that of the corresponding pristine CNT paper. The SWCNTs could act as a flexible mechanical support for strain release, offering an efficient electrically conducting channel, while the nanosized SnO2 provides the high capacity. The SWCNT/SnO2 flexible electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal decrease in the conductivity of the cell. The electrochemical response is maintained in the initial and further cycling process. Such capabilities demonstrate that this model hold great promise for applications requiring flexible and bendable Li-ion batteries.  相似文献   

20.
In an investigation of structure–property–processing relationships for SWCNT thin film piezoresistive sensors, the gauge factor of the sensors for a small tensile deformation (less than 2% strain) was found to be close to unity and showed negligible dependence on the film thickness and SWCNT bundle length (L) and diameter (d). However, for a large tensile deformation (20–30% strain), the film thickness and the microstructure of SWCNTs had a compounding effect on the piezoresistive behavior. A gauge factor of ∼5 was obtained for the sensors fabricated with SWCNT bundles of short length and thin diameter (L = 549 nm and d = 3.7 nm) with thicker films. Furthermore, the gauge factor of the sensors was found inversely proportional to the excluded volume Vex of SWCNT bundles (Vex  1/L2 d).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号