首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A simple and environment-friendly method was used to prepare Pt/reduced graphene oxide (Pt/RGO) hybrids. This approach used a redox reaction between Na2PtCl4 and graphene oxide (GO) nanosheets and a subsequent thermal reduction of the material at 200 °C for 24 h in a vacuum oven. In contrast to other methods that use an additional reductant to prepare Pt nanoparticles, the Pt2+ was directly reduced to Pt0 in the GO solution. GO was used as the reducing agent, the stabilizing agent and the carrier. The resulting Pt/RGO hybrid was characterized by X-ray diffraction, thermo-gravimetric analysis, X-ray photoelectron spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Electrochemical measurements showed that the Pt/RGO hybrids exhibit good activity as catalysts for the electro-oxidation of methanol and ethanol in acid media. Interestingly, the Pt/RGO hybrids showed better electrocatalytic activity and stability for the oxidation of methanol than Pt/C and Pt/RGO hybrids made from other Pt precursors. This indicates that the Pt/RGO hybrids should have great potential applications in direct methanol and ethanol fuel cells.  相似文献   

2.
Graphene nanosheet–Fe3O4 (GNS–Fe3O4) hybrids were obtained by a one-step solvothermal reduction of iron (III) acetylacetonate [Fe(acac)3] and graphene oxide (GO) simultaneously, which had several advantages: (1) the Fe3O4 nanoparticles were firmly anchored on GNS surface even after mild ultrasonication; (2) the loading amount of Fe3O4 nanoparticles could be effectively controlled by changing the initial feeding weight ratio of Fe(acac)3 to GO; (3) the Fe3O4 nanoparticles were homogeneously distributed on the GNS surface without much aggregation. Composites based on syndiotactic polystyrene (sPS) and GNS–Fe3O4 were prepared by a solution-blending method and the electric and dielectric properties of the resultant GNS–Fe3O4/sPS composites were investigated. The percolation threshold of GNS–Fe3O4 in the sPS matrix was determined to be 9.41 vol.%. Slightly above the percolation threshold with 9.59 vol.% of GNS–Fe3O4, the GNS–Fe3O4/sPS composite showed a high dielectric permittivity of 123 at 1000 Hz, which was 42 times higher than that of pure sPS. The AC electrical conductivity at 1000 Hz increased from 3.6 × 10−10 S/m for pure sPS to 2.82 × 10−4 S/m for GNS–Fe3O4/sPS composite containing 10.69 vol.% of GNS–Fe3O4, showing an obvious insulator-semiconductor transition.  相似文献   

3.
《Ceramics International》2016,42(15):17116-17122
A magnetic reduced graphene oxide (MRGO) composite consisting of graphene oxide and Fe3O4 particles in the range of 5–20 nm has been prepared by the one-pot hydrothermal process. RGO nanosheets provide flexible substrates for nanoparticle decoration, while Fe3O4 nanoparticles can also effectively prevent nanosheets to restack each other. Compared with previously literature, the synthesized RGO-Fe3O4 composite exhibits excellent electromagnetic wave absorption. The minimum reflection loss (RL) value of −49.05 dB has been observed at 14.16 GHz with a thickness of 2.08 mm. The absorption bandwidth (RL<−10 dB) corresponding to the minimum RL is 4.60 GHz. The electromagnetic wave absorption properties of the RGO-Fe3O4 composite have been interpreted through the quarter-wavelength matching model.  相似文献   

4.
《Ceramics International》2017,43(18):16611-16621
Effect of core-shell reversal on the nanocomposites of graphene oxide (GO) and ferric oxide (Fe2O3) was studied. Fe2O3@GO core-shell nanosheets were synthesized by sonication method, while the GO@Fe2O3 core-shell nanospheres by employing N,N′-dicyclohexylcarbodimide as the binding agent for the wrapping of GO sheets on pre-formed Fe2O3 nanoparticles (NPs). The phase composition, crystallinity and morphology of the nanocomposites were characterized by FT-IR, TEM, SEM-EDS, VSM, BET surface area study and XRD techniques. The saturation magnetization (Ms) was 1.25 and 0.51 emu g−1 for GO@Fe2O3 and Fe2O3@GO respectively owing to the dependence of magnetic properties on the reversal of core-shell. BET analysis revealed the surface area of 100.32 m2 g−1 and 45.69 m2 g−1 for GO@Fe2O3 and Fe2O3@GO nanocomposites respectively. The fabricated nanocomposites were analyzed as adsorbents for the uptake of Pb (II) ions. The impact of various factors affecting adsorption process such as pH, adsorbent dose, contact time, temperature and metal ion concentration was also investigated. GO@Fe2O3 core-shell nanospheres showed a higher adsorption capacity for Pb (II) ions as compared to Fe2O3@GO core-shell nanosheet with the maximum adsorption capacities (qm) of 303.0 and 125.0 mg g−1 respectively. The equilibrium data was estimated by Freundlich, Langmuir, D-R and Temkin isotherm models. Thermodynamic analysis confirmed the spontaneous and exothermic nature of the adsorption process. The adsorption kinetics was significantly fitted to pseudo-second order model. The results confirmed that core-shell reversal can significantly alter the adsorptive properties of Fe2O3-GO nanocomposite  相似文献   

5.
A one-pot solvothermal synthesis method was developed to prepare reduced graphene oxide (RGO) supported ferrite (MFe2O4, M = Mn, Zn, Co and Ni) hybrids using graphite oxide and metal ions (Fe3+ and M2+) as starting materials. The hybrids were characterized by X-ray powder diffraction, Raman spectra, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometer. It was shown that monodispersed MFe2O4 microspheres with uniform size were homogeneously deposited on RGO nanosheets. The influence of the metal ion concentration on the morphology of the hybrids was investigated. The hybrids possess considerable saturation magnetization, lower remanence and coercivity. Importantly, the obtained hybrids are effective adsorbents for removal of dye pollutants. It was found that over 92% rhodamine B (RhB) and 100% methylene blue (MB) with a concentration of 5 mg/L can be removed by the hybrids within 2 min when the concentration of the hybrids is 0.6 g/L. In addition, the hybrids also show enhanced photocatalytic activity in the degradation of RhB and MB. Benefiting from their bigger saturation magnetization, the hybrids can be easily separated from the solution by a magnet. This research would provide a new easy separating platform for wastewater decontamination.  相似文献   

6.
Novel reduced graphene oxide (RGO) nanosheet/PtPd nanowire hybrids were prepared by a mild wet chemical approach. Uniform Pt nanowire arrays are successfully supported on functionalized RGO nanosheets with Pd nanoparticles as growing seeds. The whole deposition process was achieved in aqueous solution at room temperature. TEM and HR-TEM analysis indicated the single-crystal feature of the Pt nanowires with a diameter of ca. 4 nm in average and a length of 20–200 nm. Electrochemical characterization demonstrated that the hybrid nanostructures have a higher catalytic activity and stability than commercial state-of-the-art platinum black catalysts (Hispec1000) toward the methanol oxidation reaction (MOR). An initial mass activity of 0.51 A mg−1 and a degradation ratio of 17.2% after 1000 potential sweeping cycles were achieved for the hybrid nanostructures, compared with 0.44 A mg−1 and 27.5% for Pt black, respectively, demonstrating a great potential of this RGO/PtPd hybrids for DMFC applications.  相似文献   

7.
A highly efficient method has been reported to fabricate the reduced graphene oxide/MnO2 (RGO/MnO2) hybrid materials, a kind of catalysts for oxidative decomposition of methylene blue (MB). The pristine suspension of graphene oxide/manganese sulfate (GO/MnSO4) produced by the modified Hummers method is in situ transformed into GO/MnO2 composites in combination with KMnO4, and then further into RGO/MnO2 composites by means of glucose-reduction. It is found that MnO2 nanoparticles with the size of 20–30 nm are uniformly distributed in the structure of RGO. A series of composites with different mass ratios of RGO to MnO2 has been proved superior catalytic activities, much higher than that of the bare MnO2 for decomposition of MB dye in the presence of H2O2. Typically, 50 mL of MB (50 mg L−1) can be completely decolorized and nearly 66% mineralized at 50 °C in 5 min with 10 mg of the RGO/MnO2 hybrid. According to the adsorption–oxidation–desorption mechanism, the high activity of RGO/MnO2 composites for decomposition of MB is closely related to the positive synergistic effect of RGO and MnO2 with the assistance of H2O2.  相似文献   

8.
Composite films consisting of polypyrrole (PPy) and graphene oxide (GO) were electrochemically synthesized by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of GO. Simultaneous chronoamperometric growth profiles and frequency changes on a quartz crystal microbalance showed that the anionic GO was incorporated in the growing GO/PPy composite to maintain its electrical neutrality. Subsequently, the GO was reduced electrochemically to form a reduced GO/PPy (RGO/PPy) composite by cyclic voltammetry. Specific capacitances estimated from galvanostatic discharge curves in 1 M H2SO4 at a current density of 1 A g?1 indicated that values for the RGO/PPy composite were larger than those of a pristine PPy film and the GO/PPy composite. In the case of 6 mg mL?1 GO for the preparation of GO/PPy, a high specific capacitance of 424 F g?1 obtained at the electrochemically prepared RGO/PPy composite indicated its potential for use as an electrode material for supercapacitors.  相似文献   

9.
《Ceramics International》2016,42(9):10682-10689
A ternary nanocomposite of Fe3O4@SnO2/reduced graphene oxide (RGO) with different contents of SnO2 nanoparticles was synthesized by a simple and efficient three-step method. The transmission electron microscopy and field emission scanning electron microscopy characterization display that plenty of Fe3O4@SnO2 core–shell structure nanoparticles are well distributed on the surface of RGO sheets. The X-ray diffractograms show that the products consist of highly crystallized cubic Fe3O4, tetragonal SnO2 and disorderedly stacked RGO sheets. The magnetic hysteresis measurement reveals the ferromagnetic behavior of the products at room temperature. The microwave absorption properties of paraffin containing 50 wt% products were investigated at room temperature in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic data show that the maximum reflection loss is −45.5 dB and −29.5 dB for Fe3O4@SnO2/RGO-1 and Fe3O4@SnO2/RGO-2 nanocomposite, respectively. Meanwhile, the reflection loss less than −10 dB is up to 14.4 GHz and 13.8 GHz for Fe3O4@SnO2/RGO-1 and Fe3O4@SnO2/RGO-2 nanocomposite, respectively. It is believed that such nanocomposite could be used as promising microwave absorbers.  相似文献   

10.
《Ceramics International》2017,43(5):4655-4662
Mn3O4/N-doped graphene (Mn3O4/NG) hybrids were synthesized by a simple one-pot hydrothermal process. The scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TG), Raman Spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the microstructure, crystallinity and compositions. It is demonstrated that Mn3O4 nanoparticles are high-dispersely anchored onto the individual graphene nanosheets, and also found that, in contrast with pure Mn3O4 obtained without graphene added, the introduction of graphene effectively restricts the growth of Mn3O4 nanoparticles. Simultaneously, the anchored well-dispersed Mn3O4 nanoparticles also play a role as spacers in preventing the restacking of graphene sheets and producing abundant nanoscale porous channels. Hence, it is well anticipated that the accessibility and reactivity of electrolyte molecules with Mn3O4/NG electrode are highly improved during the electrochemical process. As the anode material for lithium ion batteries, the Mn3O4/NG hybrid electrode displays an outstanding reversible capacity of 1208.4 mAh g−1 after 150 cycles at a current density of 88 mA g−1, even still retained 284 mAh g−1 at a high current density of 4400 mA g−1 after 10 cycles, indicating the superior capacity retention, which is better than those of bare Mn3O4, and most other Mn3O4/C hybrids in reported literatures. Finally, the superior performance can be ascribed to the uniformly distribution of ultrafine Mn3O4 nanoparticles, successful nitrogen doping of graphene and favorable structures of the composites.  相似文献   

11.
Aspergillus niger xylanase A (XylA) was immobilized onto Fe3O4-coated chitosan magnetic nanoparticles prepared by the layer-by-layer self-assembly approach. The Fe3O4-coated chitosan magnetic nanoparticles showed a high binding capacity of 162.2 mg  g 1-particles and a recovery activity of 56.5% for XylA. The immobilized XylA showed improved thermostability and storage stability compared with free XylA. The immobilized XylA retained 87.5% activity after seven successive reactions by magnetic separation. Xylotriose and xylohexaose were the main products released from birchwood xylan and wheat bran insoluble xylan by immobilized XylA, respectively.  相似文献   

12.
In this paper, we have presented experimental results for preparation of Fe3O4–graphene nanocomposite that uses an ultrasound assisted method. The graphene oxide (GO) was prepared from graphite powder using modified Hummers–Offeman method. Subsequently, the synthesis of graphene-Fe3O4 nanocomposite was carried out by ultrasound assisted co-precipitation of iron (II) and (III) chlorides in the presence of GO. The formation of GO and graphene-Fe3O4 nanocomposite was confirmed by X-ray diffraction (XRD), Energy dispersive X-ray (EDX) analysis and Fourier transform-infrared (FTIR) analysis. The particle size of Fe3O4 nanoparticles loaded on graphene nanosheets (observed from TEM image) was found to be smaller than 20 nm. The use of ultrasonic irradiations during synthesis of graphene-Fe3O4 nanocomposite resulted in uniform loading of Fe3O4 nanoparticles on graphene nanosheets. The prepared graphene-Fe3O4 nanocomposite material was used for the preparation of anode for lithium ion batteries. The electrochemical performance of the material was tested by cyclic voltammetry (CV) and charge/discharge cycles. It was observed that the capacity of Li-battery when the anode material was made using graphene-Fe3O4 nanocomposite showed stable electrochemical performance for around 120 cycles and the battery could repeat stable charge–discharge reaction.  相似文献   

13.
《Ceramics International》2017,43(2):1887-1894
Fe3O4/reduced graphene oxide (RGO) nanocomposite was synthesized by a simple hydrothermal method and then SiO2 coated onto Fe3O4 by a modified Stӧber method. The transmission electron microscopy and field emission scanning electron microscopy characterization indicate that masses of Fe3O4@SiO2 core-shell structure nanospheres attached to the RGO sheets, and that the thicknesses of SiO2 shells are about 20–40 nm. The X-ray diffractograms and Raman spectra illustrate that the synthesized samples consist of highly crystallized cubic Fe3O4, amorphous SiO2 and disorderedly stacked RGO sheets. The magnetic hysteresis loops reveal the ferromagnetic behavior of the samples at room temperature. In addition, the Fe3O4@SiO2/RGO paraffin composite exhibit excellent electromagnetic wave absorption properties at room temperature in the frequency range of 2–18 GHz, which are attributed to the effective complementarities between the dielectric loss and magnetic loss. For Fe3O4@SiO2/RGO-1 and Fe3O4@SiO2/RGO-2 nanocomposite, the minimum reflection loss can reach −26.4 dB and −16.3 dB with the thickness of 1.5 mm, respectively. The effective absorption bandwidth of the samples can reach more than 10.0 GHz with the thickness in the range of 1.5–3.0 mm. It is demonstrated that such nanocomposite could be used as a promising candidate in electromagnetic wave absorption area.  相似文献   

14.
《Ceramics International》2015,41(6):7556-7564
In this work, three-dimensional hierarchical ZnCo2O4 flower-like microspheres have been synthesized on a large scale via a facile and economical citrate-mediated hydrothermal method followed by an annealing process in air. The as-synthesized ZnCo2O4 flower-like microspheres are constructed by numerous interweaving porous nanosheets. According to the experimental results, a formation mechanism involving the assembly of the nanosheets from nanoparticles into flower-like microsphere is proposed. As a virtue of their beneficial structural features, the ZnCo2O4 flower-like microspheres exhibit a high lithium storage capacity and excellent cycling stability (1136 mA h g−1 at 100 mA g−1 after 50 cycles). This remarkable electrochemical performance can be ascribed to the hierarchical structure and porous structures in the nanosheets, which effectively increases the contact area between the active materials and the electrolyte, shortening the Li+ diffusion pathway and buffering the volume variation during cycling.  相似文献   

15.
《Ceramics International》2016,42(4):5195-5202
Reduced graphene oxide/cryptomelane (RGO/KMn8O16) composites are successfully synthesized from α-MnO2 nanorods and GO using a water-bathing precipitation method. The unique structure of KMn8O16 nanorods, with a length of 2–4 μm, dispersed on the surface of RGO leads to a much enhanced electrical conductivity and ionic transport, finally achieving composites with an improved electrochemical performance. Electrochemical measurement results show a specific capacitance of 222.3 F/g at a current density of 0.2 A/g, much higher than that of the original α-MnO2. After 500 cycles at 2.0 A/g, the RGO/KMn8O16 composite electrode still retains 92.6% of its initial specific capacitance. The excellent electrochemical performance and durability observed for this composite electrode suggest its potential application for electrochemical capacitors.  相似文献   

16.
Fe3O4 nanoparticles encapsulated in porous carbon fibers (Fe3O4@PCFs) as anode materials in lithium ion batteries are fabricated by a facile single-nozzle electrospinning technique followed by heat treatment. A mixed solution of polyacrylonitrile (PAN) and polystyrene (PS) containing Fe3O4 nanoparticles is utilized to prepare hybrid precursor fibers of Fe3O4@PS/PAN. The resulted porous Fe3O4/carbon hybrid fibers composed of compact carbon shell and Fe3O4-embeded honeycomb-like carbon core are formed due to the thermal decomposition of PS and PAN. The Fe3O4@PCF composite demonstrates an initial reversible capacity of 1015 mAh g−1 with 84.4% capacity retention after 80 cycles at a current density of 0.2 A g−1. This electrode also exhibits superior rate capability with current density increasing from 0.1 to 2.0 A g−1, and capacity retention of 91% after 200 cycles at 2.0 A g−1. The exceptionally high performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with unique structure, which not only buffers the volume change of Fe3O4 with the internal space, but also acts as high-efficient transport pathways for ions and electrons. Furthermore, the compact carbon shell can promote the formation of stable solid electrolyte interphase on the fiber surface.  相似文献   

17.
Nanofiber fabric is firstly introduced to replace common microfiber fabrics as the platform for flexible supercapacitors. Nanofiber and microfiber electrodes can be simply fabricated using a dipping process that impregnates reduced graphene oxide (RGO) nanosheets into electrospun polyamide-66 (PA66) nanofiber and microfiber fabrics. RGO nanosheets are tailored to various sizes and only RGO with a medium diameter of 250–450 nm (denoted as M-RGO) can effectively penetrate the pores of nanofiber fabrics for constructing smooth conductive paths within PA66 nanofiber fabrics. The synergistic effect between suitable sizes of RGO nanosheets and nanofiber fabrics with a high specific area provides a symmetric supercapacitor composed of M-RGO/PA66 nanofiber fabric electrodes with high-volume and high-area specific capacitance (CS,V and CS,A, equal to 38.79 F cm−3 and 0.931 F cm−2 at 0.5 A g−1, respectively), which are much larger than that of a symmetric supercapacitor composed of RGO/PA66 microfiber fabric electrodes (8.52 F cm−3 and 0.213 F cm−2 at 0.5 A g−1). The effect of impregnating nanofiber fabrics with suitably sized RGO to promote CS,V and CS,A of flexible supercapacitors has been demonstrated.  相似文献   

18.
Carbon-encapsulated Co3O4 nanoparticles homogeneously embedded 2D (two-dimensional) porous graphitic carbon (PGC) nanosheets were prepared by a facile and scalable synthesis method. With assistance of sodium chloride, the Co3O4 nanoparticles (10–20 nm) with magnetic loss were well encapsulated by onion-like carbon shells homogeneously embedded porous graphitic carbon nanosheets (thickness of less than 50 nm) with dielectric loss. In the architecture, the well impedance matching for microwave absorption can be obtained by the synergetic effect between Co3O4 nanoparticles and encapsulated porous carbon nanosheets. The minimum reflection loss value of −32.3 dB was observed at 11.4 GHz with a matching thickness of 2.3 mm for 2D Co3O4@C@PGC nanosheets. The 2D Co3O4@C@PGC nanosheets can be used as a kind of candidate for microwave absorbing materials.  相似文献   

19.
Silver-nanoparticles-decorated reduced graphene oxide (rGO) was electrodeposited on indium tin oxide (ITO) by a cyclic voltammetry method. The results of X-ray diffraction, Fourier-transform infrared transmission spectroscopy and Raman spectroscopy confirmed the simultaneous formation of cubic phase silver nanoparticles and reduction of GO through the electrodeposition process. Field emission scanning electron microscope images showed a uniform distribution of nanometer-sized silver nanoparticles with a narrow size distribution on the RGO sheets, which could only be achieved using silver ammonia complex instead of silver nitrate as precursor. The composite deposited on ITO exhibited notable electrocatalytic activity for the reduction of H2O2, leading to an enzymeless electrochemical sensor with a fast amperometric response time less than 2 s. The corresponding calibration curve of the current response showed a linear detection range of 0.1–100 mM (R2 = 0.9992) while the limit of detection was estimated to be 5 μM.  相似文献   

20.
《Ceramics International》2017,43(4):3769-3773
MoO3/reduced graphene oxide (MoO3/RGO) composites were successfully prepared via a facile one-step hydrothermal method, and evaluated as anode materials for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of RGO can enhance the electrochemical performances of MoO3/RGO composites. MoO3/RGO composite with 6 wt% RGO delivers the highest reversible capacity of ~208 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability and excellent rate performance for SIBs. The excellent sodium storage performance of MoO3/RGO should be attributed to the synergistic effect between MoO3 and RGO, which offers the increased electrical conductivity, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号