首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(20):28669-28674
A facile strategy for the fabrication of a carbon shell on Fe3O4 nanoparticles with a cluster structure has been proposed. Unlike the conventional solvothermal process using an autoclave, the proposed synthesis method could yield core-shell structured Fe3O4@C nanoparticles at low temperature and atmospheric pressure. This synthesis method was based on the chemical bonding among the terminal amine groups, introduced on the Fe3O4 surface, and carbonization by the catalytic reaction of glucose (carbon source) with sulfuric acid. The properties of the Fe3O4@C nanoparticles so obtained depended on the terminal amine groups that modified the iron oxide surface. The effects of the silane- and polymer-based amination on the fabrication of the carbon shell were investigated.  相似文献   

2.
Magnetic Fe3O4@C nanocomposites with well-defined core@shell structure were synthesized via a facile one-step solvothermal process using ferrocene as both iron and carbon resource in the presence of hydrogen peroxide (H2O2). The as-prepared Fe3O4@C nanocomposites were employed as adsorbent materials for removal of methylene blue (MB) from aqueous solution. Several experimental parameters, including contact time, acidity of the solution, and initial MB concentration were investigated. The result showed that the equilibrium uptake of MB was related to the MB initial concentration as well as acidity of the solution. The adsorption kinetics of MB was dominated by the pseudo-second order reaction model. Significantly, the synthesized Fe3O4@C nanocomposites could be easily isolated from the adsorption system after adsorbing MB and showed prominent reusability. All results indicated that the prepared Fe3O4@C composites had the potential to be used as adsorbents for the removal of dye pollutant from wastewater.  相似文献   

3.
Fe3O4 @C nano-adsorption was prepared by a simple one-step solvothermal synthesis method using Fe (NO3)3 、cyclodextrin as raw materials, meanwhile urea as an alkali source. The obtained samples were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, and Brunauer-Emmett-Teller. The adsorption behavior of the Fe3O4@C toward Cr (VI) and Congo red was also studied. The core-shell structure Fe3O4@C exhibited large specific surface area of 112.91?m2 g?1. The prepared Fe3O4@C samples demonstrated typical ferromagnetic behavior and high removal capacity in removing the toxic Cr (VI) ions and organic pollutant CR from wastewater, together with facile magnetic separability and good recyclability. Equilibrium adsorption performance was conducted by using the Langmuir and Freundlich model and Freundlich model could simulate the adsorption process of Congo red and Cr (VI) better. The maximum adsorption capacity of Cr (VI) and Congo red was 33.35?mg?g?1 and 262.72?mg?g?1 by calculation.  相似文献   

4.
A magnetically separable Fe3O4–NH2–Pd (0) catalyst was easily synthesized by immobilizing Pd nanoparticles on the surface of magnetic Fe3O4–NH2 microspheres. It was found that the combination of Fe3O4 and triethylene tetramine (TETA) could give rise to structurally stable catalytic sites. Furthermore, the high-magnetization Fe3O4–NH2–Pd(0) catalyst can be recovered by magnet and reused for six runs for Heck reaction without significant loss in catalytic activity.  相似文献   

5.
Much attention has been increasingly focused on the applications of noble metal nanoparticles (NPs) for the catalytic degradation of various dyes and pigments in industrial wastewater. We have demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibit high catalytic activity and excellent durability in reductive degradation of MO, R6G, RB. Specific surface area was successfully prepared by simultaneous reduction of Pd(OAc)2 chelating to PEI grafted graphene oxide nanosheets modified with Fe3O4. The as-prepared Pd NPs/Fe3O4-PEI-RGO nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM and energy dispersive X-ray spectroscopy, and UV-lambda 800 spectrophotometer, respectively. The catalytic activity of Pd NPs/Fe3O4-PEI-RGO nanohybrids to the degradation of MO, R6G, RB with NaBH4 was tracked by UV-visible spectroscopy. It was clearly demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibited high catalytic activity toward the degradation of dyes and pigments, which could be relevant to the high surface areas of Pd NPs and synergistic effect on transfer of electrons between reduced graphene oxide (RGO), PEI and Pd NPs. Notably, Pd NPs/Fe3O4-PEI-RGO nanohybrids were easily separated and recycled thirteen times without obvious decrease in system. Convincingly, Pd NPs/Fe3O4-PEI-RGO nanohybrids would be a promising catalyst for treating industrial wastewater.  相似文献   

6.
A high surface, magnetic Fe3O4@mesoporouspolyaniline core‐shell nanocomposite was synthesized from magnetic iron oxide (Fe3O4) nanoparticles and mesoporouspolyaniline (mPANI). The novel porous magnetic Fe3O4 was obtained by solvothermal method under sealed pressure reactor at high temperature to achieve high surface area. The mesoporouspolyaniline shell was synthesized by in situ surface polymerization onto porous magnetic Fe3O4 in the presence of polyvinylpyrrolidone (PVP) and sodium dodecylbenzenesulfonate (SDBS), as a linker and structure‐directing agent, through ‘blackberry nanostructures’ assembly. The material composition, stoichiometric ratio and reaction conditions play vital roles in the synthesis of these nanostructures as confirmed by variety of characterization techniques. The role of the mesoporouspolyaniline shell is to stabilize the porous magnetic Fe3O4 nanoparticles, and provide direct access to the core Fe3O4 nanoparticles. The catalytic activity of magnetic Fe3O4@mesoporousPANI nanocomposite was evaluated in the cross‐coupling of aryl chlorides and phenols.  相似文献   

7.
Fe3O4@polydivinylbenzene (PDVB) submicrospheres were prepared via distillation–precipitation polymerization of DVB in the presence of submicron magnetite colloid nanocrystal clusters (MCNCs) as seeds. The surface of the MCNCs was modified with vinyl groups before PDVB encapsulation. The resulting Fe3O4@PDVB particles showed a well-defined core–shell structure, and the shell thickness could be readily controlled by the DVB dosage. A lowly cross-linked poly(methacrylic acid) (PMAA) layer could be further coated onto the highly cross-linked PDVB shell via a second-stage DPP process, suggesting the presence of residual vinyl groups on the surface of the Fe3O4@PDVB particles. The hybrid particles showed rather high magnetization and near superparamagnetism, hence capable of easy magnetic separation.  相似文献   

8.

Development of new materials for catalytic applications is one of the rapidly growing research areas. The selective oxidation of 5-hydroxymethyl furfural (HMF) to 2,5-diformylfuran (DFF) is one of the rapidly growing research area due to having its own importance in the fuel technology. We report a new heterogeneous catalyst for the oxidation of HMF to DFF in aqueous medium using a carbon soot (from candle light) deposited on magnetite (Fe3O4@C). Further, the potentiality of our catalyst has also been realized in direct production of DFF from biomass (using either fructose or glucose) with high conversions via two consecutive steps involving dehydration and oxidation. Further, proved that Fe3O4@C plays a major role in the dehydration of sugar molecules whereas Fe3O4 alone could not.

  相似文献   

9.
In this study, a novel Pd(II) complex functionalized core–shell magnetic mesoporous catalyst (Fe3O4@SiO2@mSiO2–Pd(II)) was synthesized by a simple cost effective procedure. It was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and nitrogen physical adsorption. The Fe3O4@SiO2@mSiO2–Pd(II) catalyst offered high surface area and exhibited excellent activity towards Suzuki–Miyaura cross-coupling reaction of halides with aryl boronic acids in ethanol in air. The Fe3O4@SiO2@mSiO2–Pd(II) catalyst was stable, reusable, and conveniently recovered by applying an external magnetic field. Moreover, it provided 91% conversion after the sixth catalytic run. The Fe3O4@SiO2@mSiO2–Pd(II) catalyst examined in this study combined both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst. The results revealed that the Fe3O4@SiO2@mSiO2–Pd(II) catalyst is promising as a candidate for various Pd-based catalytic applications.  相似文献   

10.
In this study, bifunctional Fe3O4@ZrO2 magnetic core–shell nanoparticles (NPs), synthesized by a simple and effective sonochemical approach, were attached to the surface of a magnetic glassy carbon electrode (MGCE) and successfully applied to the immobilization/adsorption of myoglobin (Mb) for constructing a novel biosensor platform. With the advantages of the magnetism and the excellent biocompatibility of the Fe3O4@ZrO2 NPs, Mb could be easily immobilized on the surface of the electrode in the present of external magnetic field and well retained its bioactivity, hence dramatically facilitated direct electron transfer of Mb was demonstrated. The proposed Mb/Fe3O4@ZrO2 biofilm electrode exhibited excellent electrocatalytic behaviors towards the reduction of H2O2 with a linear range from 0.64 μM to 148 μM. This presented system avoids the complex synthesis for protecting Fe3O4 NPs, supplies a simple, effective and inexpensive way to immobilize protein, and is promising for construction of third-generation biosensors and other bio-magnetic induction devices.  相似文献   

11.
A novel magnetically recoverable core–shell Fe3O4@Ag3PO4/AgCl photocatalyst exhibiting rapid magnetic separation, stability and high photocatalytic activity under simulated solar light has been developed. Briefly, Ag3PO4 is immobilized on Fe3O4 nanoparticles and then an AgCl shell is formed by in situ ion exchange. The complete degradation of the methylene blue (MB) over the Fe3O4@Ag3PO4/AgCl photocatalyst only took about 60 min, much faster than WO3–Pd photocatalyst. Fe3O4@Ag3PO4/AgCl nanocomposites can be easily recovered by a magnet, and reused at least five times without any appreciable reduction in photocatalytic efficiency.  相似文献   

12.
We demonstrate a facile synthesis of monodisperse magnetite (Fe3O4) nanoparticles (NPs) via a simple wet chemical route at 180°C using oleylamine (C18H37N), which serves as a solvent, ligand, and surfactant. The particles have a narrow size distribution centered at about 10 nm. To provide better electron conductivity and structural stability, the as‐synthesized particles are given a carbon nanocoating by pyrolysis of the residual surfactant on their surface. This pyrolysis forms a uniform thin nanocoating on each particle, and a core/shell Fe3O4/carbon NP network was thus obtained. The core/shell Fe3O4/carbon electrode shows better reversible capacity, cycle life, and rate capability than a bare Fe3O4 NP electrode because of its efficient electron transport and stress relaxation provided by the thin carbon layer.  相似文献   

13.
Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst   总被引:1,自引:0,他引:1  
The magnetic photocatalyst, Fe3O4/BiOCl nanocomposite, was prepared and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), physical property measurement system (PPMS). It was found that Fe3O4/BiOCl was an effective photocatalyst to degrade the organic dyes. Compared with the conventional core–shell magnetic photocatalysts, such as Fe3O4/TiO2 system which dramatically lost their intrinsically photocatalytic activity due to the introduction of the magnetic core, the as-synthesized Fe3O4/BiOCl reserved as high photocatalytic activity as that of BiOCl. The high catalytic activity possibly involved in a coupled structure and the special interfaces, that is, the probability of combination of the carriers could be reduced in this system. Moreover, the superparamagnetic Fe3O4/BiOCl can be not only easily recycled but also fluidized by applying an external magnetic field.  相似文献   

14.
We demonstrate the synthesis and characteristics of multifunctional poly(styrene-co-fluorescein O-methacrylate)/poly(N-isopropylacrylamide)-Fe3O4 [P(St/FMA)/PNIPAAm-Fe3O4] core/shell composite particles, in which the core consists of fluorescent materials and the shell consists of magnetic and thermo-responsive components. First, core/shell particles consisting of a fluorescent P(St/FMA) core and thermo-responsive PNIPAAm-rich shell were prepared by two-stage shot-growth emulsion polymerization. Next, Fe3O4 nanoparticles were immobilized via electrostatic interactions and then covalently linked to the shell via surface coordinated Aphen by a coupling reaction in order to obtain magnetic properties. The morphology of P(St/FMA)/PNIPAAm-Fe3O4 composite particles, confirmed by transmission electron microscopy (TEM), reveals that Fe3O4 nanoparticles are located in the PNIPAAm shell. The thermo-sensitivity of composite particles to hydrodynamic diameter was confirmed by using dynamic light scattering (DLS). Photoluminescence (PL) spectra indicate that the fluorescence emission intensity of core/shell particles is highly sensitive to the pH of an aqueous medium. The core/shell composite particles exhibited a combination of fluorescent, magnetic, pH and thermo-responsive behavior.  相似文献   

15.
《Ceramics International》2020,46(7):8928-8934
Multifunctional nanomaterials composed of magnetic and fluorescent nanoparticles have been one of the most extensive pursuits because of the potential application in bio-research. In this paper, we demonstrated an efficient method by coupling CdSe/CdS/ZnS quantum dots (QDs) with Fe3O4 magnetic nanoparticles(MNPs) while functionalized multiwall carbon nanotubes (f-MWCNTs) were used as matrix to synthesize a kind of magnetic fluorescent nanocomposite. Compared with other matrix materials, carbon nanotubes have the advantages of high surface areas and good biocompatibility. The incorporation of f-MWCNTs supplies plenty of nucleation sites for the preferential growth of Fe3O4 nanoparticles, avoiding the agglomeration phenomenon of Fe3O4 MNPs in traditional co-precipitation method. Moreover, the un-reacted functional groups of f-MCNTs can further adsorb biological species and drugs, averting the decline of fluorescent intensity caused by the modification of biological species and drugs. The synthetic product maintains the unique properties of rapid magnetic response and efficient fluorescence, which shows a broad application prospect in fluorescent labeling, biological imaging, cell tracking and drug delivery.  相似文献   

16.
A series of Fe3O4/C core–shell nanospindles with different shell thickness have been synthesized by a wet chemical method and subsequent high-temperature carbonization. The thickness of carbon shell can be well adjusted from 9 to 32 nm by changing the addition amounts of resorcinol and formaldehyde precursors during the coating process. Structure and morphology characterizations reveal that the carbon shell is amorphous structure and uniformly encapsulates on porous Fe3O4 nanospindles. For the first time, a flexible Fe3O4/C/poly(vinylidene fluoride) (PVDF) composite absorber was prepared by embedding the core–shell Fe3O4/C nanospindles in PVDF matrix. The electromagnetic properties of the composite show strong dependence on the carbon-shell thickness. The impedance matching for electromagnetic absorption is improved by the synergy effect between Fe3O4 nanospindles and encapsulated carbon shell. The Fe3O4/C/PVDF composite with thick carbon shell exhibits strong electromagnetic wave absorbing ability with thin absorber thickness. The minimum reflection loss for the absorber with thickness of 2.1 mm can reach −38.8 dB.  相似文献   

17.
《Ceramics International》2020,46(15):23932-23940
A three-step strategy combining solvothermal and liquid phase reduction method had been developed for preparation of magnetic triple-shell hollow structural Fe3O4/FeCo/C (TSH–Fe3O4/FeCo/C) composite microspheres. FeCo was used to enhance electromagnetic (EM) wave absorption in different frequency band and broaden effective absorbing bandwidth, while carbon was used to improve impedance matching. Triple-shell hollow structure was designed to enrich the multiple interfaces to favor the interfacial polarization, increase the multiple reflections and scattering, and provide physicochemical protection to Fe3O4 core from oxidation. The microstructure and morphology of TSH-Fe3O4/FeCo/C composite microspheres were characterized by TEM, XRD and Raman in detail. The results indicated that magnetic Fe3O4 was completely covered by FeCo and carbon via layer by layer. As an EM wave absorber, the maximum reflection loss of TSH-Fe3O4/FeCo/C composite microspheres was up to -37.4 dB due to better normalized characteristic impedance at a thickness of 2.2 mm and the bandwidth less than -10 dB even reached up to 5.9 GHz. The excellent EM wave absorption performance was attributed to the combination of shell materials (Fe3O4, FeCo and carbon) and unique triple-shell hollow structure, which lead to multiple relaxation processes and good impedance matching. Consequently, this work would contribute to the design and preparation of high performance EM wave absorbent with outstanding absorbing property and wider absorption range.  相似文献   

18.
Owing to their good stability and high photothermal conversion efficiency, the development of carbon-based nanoparticles has been intensively investigated, while the limitation of unsatisfactory cellular internalization impedes their further clinical application. Herein, we report a novel strategy for fabrication of Fe3O4 yolk–shell mesoporous carbon nanocarriers (Fe3O4@hmC) with monodispersity and uniform size, which presented significantly higher cell membrane adsorption and cellular uptake properties in comparison with common solid silica-supported mesoporous carbon nanoparticles with core–shell structure. Moreover, the MRI performance of this novel Fe-based nanoparticle could facilitate precise tumor diagnosis. More importantly, after DOX loading (Fe3O4@hmC-DOX), owing to synergistic effect of chemo–phototherapy, this therapeutic agent exhibited predominant tumor cell ablation capability under 808 nm NIR laser irradiation, both in vitro and in vivo. Our work has laid a solid foundation for therapeutics with hollowed carbon shell for solid tumor diagnosis and therapy in clinical trials.  相似文献   

19.
Bifunctional magnetic–fluorescent composite nanoparticles (MPQDs) with Fe3O4 MPs and Mn:ZnS/ZnS core–shell quantum dots (QDs) encapsulated in silica spheres were synthesized through reverse microemulsion method and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer, and photoluminescence (PL) spectra. Our strategy could offer the following features: (1) the formation of Mn:ZnS/ZnS core/shell QDs resulted in enhancement of the PL intensity with respect to that of bare Mn:ZnS nanocrystals due to the effective elimination of the surface defects; (2) the magnetic nanoparticles were coated with silica, in order to reduce any detrimental effects on the QD PL by the magnetic cores; and (3) both Fe3O4 MPs and Mn:ZnS/ZnS core–shell QDs were encapsulated in silica spheres, and the obtained MPQDs became water soluble. The experimental conditions for the silica coating on the surface of Fe3O4 nanoparticles, such as the ratio of water to surfactant (R), the amount of ammonia, and the amount of tetraethoxysilane, on the photoluminescence properties of MPQDs were studied. It was found that the silica coating on the surface of Fe3O4 could effectively suppress the interaction between the Fe3O4 and the QDs under the most optimal parameters, and the emission intensity of MPQDs showed a maximum. The bifunctional MPQDs prepared under the most optimal parameters have a typical diameter of 35 nm and a saturation magnetization of 4.35 emu/g at room temperature and exhibit strong photoluminescence intensity.  相似文献   

20.
Herein we report the fabrication and characterization of Pd decorated Fe3O4 nanoparticles as highly effective catalysts for hydrogenation of 4-nitroaniline and 1,3-dinitrobenzene in liquid phase. The fabricated Fe3O4 nanoparticles exhibit an average size of 12 nm and super paramagnetic character with a high saturation magnetization (80 emu/g). The surface –NH2 groups effectively binds the in situ formed Pd nanoparticles. Thus formed Fe3O4–APTES–Pd(0) catalyst showed a very high catalytic activity in reduction reactions of 4-nitroaniline and 1,3-dinitrobenzene in liquid phase. Electron donor –NH2 groups supported Pd may be responsible for the increased catalytic activity. The superparamagnetic character of this system allows easy recovery and multiple uses without significant loss of its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号