共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrically conductive glass-fiber-reinforced polymer composites have been prepared by adding carbon black, and carbonization processes have been applied to the resulting matrices. The carbonized composites were found to show characteristic changes in resistance during cyclic tensile tests, in which the resistance increased in the loaded state was retained even after unloading. Pyrolysis temperature dependence of the residual phenomena was investigated in order to understand the effects of the carbonized matrix and the carbon black network. The residual behavior became more pronounced with increasing pyrolysis temperature until 500 °C, while that diminished over 600 °C. The thermal decomposition of the matrix was almost completed up to 500 °C, and the shrunk matrix coexisting with glass fibers had a residual tensile stress along the fiber direction. The matrix carbonized at higher than 600 °C showed an increase in conductivity, which disrupted the strain-sensitive percolation network and hence the resistance response. These results showed that irreversible change in the carbon black network under the internal tensile stress provided the residual phenomena. 相似文献
2.
《Carbon》2013
Carbon nanotube (CNT) fibers spun from CNT arrays were used as the reinforcement for epoxy composites, and the interfacial shear strength (IFSS) and fracture behavior were investigated by a single fiber fragmentation test. The IFSS between the CNT fiber and matrix strongly depended on the types of liquid introduced within the fiber. The IFSS of ethanol infiltrated CNT fiber/epoxy varied from 8.32 to 26.64 MPa among different spinning conditions. When long-molecule chain or cross-linked polymers were introduced, besides the increased fiber strength, the adhesion between the polymer modified fiber and the epoxy matrix was also significantly improved. Above all, the IFSS can be up to 120.32 MPa for a polyimide modified CNT fiber, one order of magnitude higher than that of ethanol infiltrated CNT fiber composites, and higher than those of typical carbon fiber/epoxy composites (e.g. 60–90 MPa). Moreover, the composite IFSS is proportional to the tensile strength and modulus of the CNT fiber, and decreases with increasing fiber diameter. The results demonstrate that the interfacial strength of the CNT fiber/epoxy can be significantly tuned by controlling the fiber structure and introducing polymer to optimize the tube–tube interactions within the fiber. 相似文献
3.
《Carbon》2014
Structural health monitoring (SHM) seeks to provide ongoing monitoring of a structure’s integrity. Current SHM approaches include embedding some type of sensor within the composite or applying a sensor to the outside surface of the structure. These sensors react to strain or other changes in order to detect damage. In this study, a novel, multi-modal, nanomaterial based sensor technology that can provide wide area detection of damage was used. The efforts presented here serve as a feasibility study into the incorporation of carbon nanomaterials into structural composites as sensors. The carbon nanotube (CNT) covered fiber (fuzzy fiber) sensors exhibit similar sensitivity to conventional strain gages and are more easily integrated into composite structures as the sensor itself is a composite. The fuzzy fiber strain gages can be used to sense strain within composite structures and can be readily integrated into the structural laminate to provide sensing over large sections and in previously inaccessible locations. The unique properties of the fuzzy fiber lends itself to application in a wide range of sensing tasks within a structural composite including strain, temperature, degradation, etc. The fuzzy fiber may be tailored so that the same basic sensor can be used for a multitude of sensing applications. 相似文献
4.
Polymer/carbon nanotube composites for liquid sensing: Model for electrical response characteristics
Electrically conductive polymer composites (CPCs) based on carbon nanotubes (CNTs) and polycarbonate were investigated regarding their electrical resistance change in different solvents like tetrahydrofuran, acetone, and ethyl acetate. CPCs containing 0.086 to 2.778 vol.% CNT were melt mixed using a twin-screw extruder under optimised conditions and subsequently compression-moulded.All sensing experiments revealed a resistance increase of CPCs having a U-shaped sample geometry during solvent immersion. Light microscopy investigations have shown that the diffusion of solvents into CPCs can be monitored in terms of a pronounced diffusion front, separating a swollen skin from the dry core. Based on this observed skin-core morphology, a model allowing the calculation of the time depending relative resistance change has been proposed considering several factors like diffusion parameters, composite characteristics, and geometrical values.Simulated response curves based on the model were compared with experimental data obtained on the CPCs and very good agreement was observed. Using this model the influence of CNT content and kind of solvent could be described exactly. 相似文献
5.
6.
《Ceramics International》2022,48(2):1740-1744
A novel SiC coating with a relatively high crack resistance property (crack extension force (GC): 12.0 J·m?2) and outstanding thermal shock resistance was achieved merely by pack cementation. Compared with the conventional SiC coating with Al2O3 addition (AOSC2), SiC coating with Al–B–C additions (ABSC2) possesses refined and denser microstructure owing to different effects in promoting SiC densification under different additions. Therefore, the improvement in microstructures results in superior mechanical capabilities, antioxidation performance (900 °C), and thermal shock resistance (between 1500 °C and room temperature). 相似文献
7.
Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry 总被引:2,自引:0,他引:2
For assessing the state of dispersion, which plays an important role in improving the mechanical properties of carbon nanotube (CNT) reinforced composite material, the relationship between the state of particle distribution and the change in the cure kinetics was experimentally investigated by the use of differential scanning calorimetry. It was found that the addition of CNTs to epoxy resin reduced the total heat of reaction. This may be because CNTs act as obstacles to the cross-linking reaction. The decrease was found to depend on the CNT concentration as well as the state of dispersion. To obtain a correlation between the decrease in the total heat of reaction and the quantity of well-dispersed particles, the mass of aggregated particles was measured by dynamic light scattering. The results showed that there is a correlation between the concentration of well-dispersed CNTs and the total heat of reaction. Any departure from this correlation could be interpreted as poor dispersion and the magnitude of the difference may serve as an indicator of the overall state of dispersion. 相似文献
8.
Polystyrene (PS) composites with a network of single‐walled carbon nanotubes (SWNTs) were fabricated by using monodispersed PS micospheres. First, PS spheres and surfactant‐dispersed SWNTs were mixed in water, then a hybrid cake was obtained by filtration via a microporous membrane and the SWNTs were filled within the spaces of packed polymer spheres. At this stage, the surfactants for dispersing SWNTs were totally removed from the composites by a thorough washing. Then the composite films with SWNT networks were obtained by compression molding at 160°C. Structure of the composites had been characterized by transmission electron microscopy and scanning electron microscopy. The present SWNT composites showed a low percolation threshold of electrical conductivities. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
9.
《Carbon》2014
By using a catalytic growth procedure, carbon nanotubes (CNTs) are in situ formed on reduced graphene oxide (RGO) sheet at 600 °C. CNTs growing on RGO planes through covalent C–C bond possess lower interfacial contact electrical resistance. As a hybrid structure, the CNTs/graphene (CNT/G) are well dispersed into poly (dimethyl siloxane). The hybrid combining electrically lossy CNTs and RGO, which disperses in electrically insulating matrix, constructs an electromagnetic wave (EM) absorbing material with ternary hierarchical architecture. The interfacial polarization in heterogeneous interface plays an important role in absorbing EM power. When the filler loading is 5 wt.% and thickness of absorber is 2.75 mm, the minimum value of reflection coefficient and the corresponding frequency are −55 dB and 10.1 GHz, and the effective absorption bandwidth reaches 3.5 GHz. Therefore, combining the CNTs and graphene sheet into three-dimensional structures produces CNT/G hybrids that can be considered as an effective route to design light weight and high-performance EM absorbing material, while the effective EM absorption frequency can be designed. 相似文献
10.
Photoisomerization of electroactive polyimide/multiwalled carbon nanotube composites on the effect of electrochemical sensing for ascorbic acid
下载免费PDF全文
![点击此处可从《Polymer International》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Kung‐Chin Chang Chien‐Ming Chu Chi‐Hao Chang Hsiao‐Tung Cheng Sheng‐Chieh Hsu Chia‐Ching Lan Hsiu‐Hui Chen Yu‐Yuan Peng Jui‐Ming Yeh 《Polymer International》2015,64(3):373-382
We present the first investigation of photoisomerization of the azo‐based electroactive polyimide (PI)/amino‐functionalized multiwalled carbon nanotube (MWCNT) composite electrode on the effect of electrochemical sensing for ascorbic acid (AA). First, MWCNTs were grafted with 4‐aminobenzoic acid in a medium of polyphosphoric acid/phosphorous pentoxide to obtain MWCNTs functionalized with 4‐aminobenzoyl groups (AF‐MWCNTs). Subsequently, photoactive and electroactive PI/AF‐MWCNT composites (PEPACCs) were prepared by introducing pendant conjugated oligoaniline (amino‐capped aniline trimer) in the main chain and azobenzene chromophores in the side chain, in the presence of AF‐MWCNTs. Photoactive and electroactive PI (PEPI) and PEPACCs were characterized by 1H NMR spectra, UV?visible absorption spectra, cyclic voltammetry (CV) and transmission electron microscopy. The CV study shows that the PEPACCs have higher electroactivity than PEPI. The redox and reversible photoisomerization (i.e. cis ? trans) behavior of PEPACCs was analyzed by in situ monitoring through systematic studies of CV and UV?visible spectroscopy. The light of the UV lamp was 365 nm. It should be noted that the sensor constructed from a trans‐PEPACC‐modified carbon‐paste electrode (CPE) demonstrated a higher electrocatalytic activity by 2.75‐fold and 1.12‐fold towards the oxidation of AA compared with those constructed using a PEPI‐ and cis‐PEPACC‐modified CPE, respectively. The detection limit of the trans‐PEPACC‐modified electrode was 1.73‐fold and 1.70‐fold lower than that of PEPI‐ and cis‐PEPACC‐modified CPE. Moreover, the differential pulse voltammetry data showed that the trans‐PEPACC‐modified electrode had high electrochemical sensing ability for the determination of AA, dopamine and uric acid. © 2014 Society of Chemical Industry 相似文献
11.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers 相似文献
12.
Marco Monti Maurizio Natali Roberto Petrucci José M. Kenny Luigi Torre 《应用聚合物科学杂志》2011,122(4):2829-2836
In this article, we report an interesting employment of multi‐walled carbon nanotubes as a filler in the epoxy matrix of a glass fiber reinforced composite (FRP). The intrinsic electrical conductivity of carbon nanotubes made the development of a nanocomposite with enhanced electrical properties possible. The manufactured nanocomposite was subsequently employed in the production of a glass FRP. Due to the high aspect ratio of carbon nanotubes, very small amounts of these particles were sufficient to modify the electrical properties of the obtained glass fiber composites. Basically, a three‐phases material was developed, in which two phases were electrically insulating—epoxy matrix and glass fiber—and one phase highly conductive, the carbon nanotubes. The main goal of this study was to investigate the possibility of developing a glass fiber reinforced nanocomposite (GFRN), which is able to provide measurable electrical signals when subjected to a low‐velocity impact on its surface. Following this goal, the drop in the mechanical performance of the composite was evaluated before and after the impact. At the same time, the variation in its electrical resistance was measured. The results have shown that it is possible to associate the increase in electrical resistance of the composite with the formation of damages caused by impact. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
13.
14.
Interfacial chemistry using a bifunctional coupling agent for enhanced electrical properties of carbon nanotube based composites 总被引:1,自引:0,他引:1
A bifunctional coupling agent (BCA) containing one oxazoline and one benzoxazinone group was applied to promote a reaction between polyamide 12 (PA12) and multiwalled carbon nanotubes (MWCNTs) during melt mixing. With this modification, the MWCNT content needed for the electrical percolation was significantly reduced by more than a factor of three. For amino functionalized MWCNT–PA12 composites adding 1 wt.% BCA electrical percolation was reached at only 0.37 wt.% MWCNTs compared to 1.0 wt.% without BCA. With the help of a model reaction, the covalent attachment of the BCA to the MWCNTs could be shown by thermogravimetric analysis (TGA) and via fluorescence spectroscopy. Model compounds were applied containing either only the oxazoline or the benzoxazinone group to show that the better electrical properties in the PA12–MWCNT composites were a result of a covalent bond between the polymer and the nanotube which only takes place when the BCA was used. In addition, significantly higher electrical conductivity values were obtained by the addition of BCA as well with amino functionalized as with nonmodified commercial MWCNTs. This surprising result was attributed to the significant hydroxy group content on the surface of those commercial MWCNTs. 相似文献
15.
Keungarp Ryu Huahua Xue Junghee Park 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2013,88(5):788-793
BACKGROUND: Recently, various composites of carbon nanomaterials and conducting polymers have been actively investigated as potential electrode materials for supercapacitors which can store and deliver large amounts of electrical energy promptly. Harsh chemical or complex electrodeposition methods have been studied to prepare such composites. In this report, the mild and simple enzymatic catalysis of horseradish peroxidase (EC 1.11.1.7) in aqueous solutions (pH 4.0) was utilized for the first time to prepare composites of multiwalled carbon nanotubes and polypyrrole. RESULTS: Electron micrographs show that in situ enzymatic reaction by horseradish peroxidase enables the uniform coating of multiwalled carbon nanotubes with polypyrrole without containing the polymer aggregates. The specific capacitance of the composites (46.2 F g?1) measured with a two‐electrode cell containing an electrolyte of 1 mol L?1 NaNO3 increased more than four‐fold compared with that obtained with bare multiwalled carbon nanotubes (10.8 F g?1). CONCLUSIONS: Horseradish peroxidase‐catalyzed in situ synthesis of the composites of multiwalled carbon nanotubes and polypyrrole requires neither the derivatization of multiwalled carbon nanotubes and/or pyrrole monomers nor the post‐doping of the synthesized composites to enhance the capacitance of the composites. © 2012 Society of Chemical Industry 相似文献
16.
Qinglei Liu Di Zhang Tongxiang Fan Jiajun Gu Yoshinari Miyamoto Zhixin Chen 《Carbon》2008,46(3):461-465
Carbon-matrix composites with self-assembly interconnected carbon nano-ribbon networks were fabricated using natural and inexpensive rice husks by impregnating the rice husks with transitional metal solutions and sintering. The nano-structure of the composite was characterized using transmission electron microscopy. The electromagnetic interference shielding effectiveness of the composite was evaluated in the frequency range of 30 kHz–1.5 GHz. The electrical conductivity was measured as a function of the sintering temperature. These characteristics were compared with those of carbon-matrix composites without nano-ribbon networks. 相似文献
17.
Fang Mai Dongdong Pan Xiang Gao Meijun Yao Hua Deng Ke Wang Feng Chen Qiang Fu 《Polymer International》2011,60(11):1646-1654
In this work, polyamide 66 (PA66) and its composites with multiwalled carbon nanotubes (MWNTs) were melt spun into fibers at different draw ratios. PA66 fibers at high draw ratio demonstrate a 40% increase in tensile strength, 66% increase in modulus and a considerable increase in toughness. It is demonstrated that this reinforcement can be mainly attributed to high‐draw‐ratio‐induced good dispersion and orientation of MWNTs, particularly the enhanced interfacial adhesion between MWNT and matrix thanks to interfacial crystallization. Our work provides a simple but efficient method to achieve good dispersion and strong interfacial interaction through melt spinning. Copyright © 2011 Society of Chemical Industry 相似文献
18.
The interphase between reinforcing fibre and matrix is a controlling element in composite performance. We deposited multi-walled carbon nanotubes (MWCNTs) onto electrically insulating glass fibre surfaces leading to the formation of semiconductive MWCNT-glass fibres and in turn multifunctional fibre/polymer interphases. The deposition process of MWCNTs onto glass fibre surfaces involved both electrophoretic deposition (EPD) and conventional dip coating methods. The EPD coating method produces a more homogeneous and continuous nanotube distribution on the glass fibre surface compared with the dip coating. According to fragmentation test results, the interphase with a small number of heterogeneous MWCNTs in the EPD fibre/epoxy composites, mimicking a biological bone structure, can remarkably improve the interfacial shear strength. We found that the semiconductive interphase results in a high sensitivity of the electrical resistance to the tensile strain of single glass fibre model composites. This material provides a possible in situ mechanical load sensor and early warning of fibre composite damage. 相似文献
19.
A new compatibilizer, poly(vinyl benzyloxy methyl naphthalene)-g-poly(t-butyl methacrylate-co-methacrylic acid), was synthesized for Nylon 66 (N66)/multi-walled carbon nanotube (MWCNT) composites. It has been shown that the naphthalene unit in the main chain of the compatibilizer interacts with MWCNTs by π–π interaction and that the carboxylic acid unit in the graft chain of the compatibilizer interacts with the amide group of N66. The use of the compatibilizer produces well-dispersed MWCNTs in N66 matrix, which results in improved mechanical and electrical properties of the composites, while the simple mixture of N66/MWNCTs without the compatibilizer exhibits poor mechanical and electrical properties due to severe aggregation of MWCNTs. It is also found that the compatibilizer with a small amount of carboxylic acids is more effective for improving the mechanical and electrical properties of N66/MWCNT composites. 相似文献
20.
A high‐density polyethylene (HDPE) masterbatch containing 20.2 wt% multiwalled carbon nanotubes (MWNTs) was melt diluted with neat HDPE using two different methods: a twin screw microcompounder and a single‐screw extruder. The electrical properties of these composites were assessed using bulk electrical conductivity measurements, their mechanical properties were evaluated using tensile tests and dynamic mechanical analysis (DMA), and percent crystallinity was determined by wide angle x‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). A percolation threshold (pc) of 4.5 wt% MWNTs was found in compression‐molded samples. Extruded samples were prepared with nanotube concentrations below and above the compression‐molded percolation threshold (2 and 7 wt% MWNTs) and passed through the extruder twice before entering a low‐shear melt annealing zone. Different melt annealing times were used and their effects on the electrical and mechanical properties of the resulting quench‐cooled composites were evaluated. Results showed that extruded composites were nonconductive, indicating that a conductive nanotube network did not form on the time scale of these experiments. Annealing time also did not affect significantly the mechanical properties of the resulting solid composites. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers 相似文献