首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Diamond and Related Materials》2007,16(4-7):1121-1125
We have found that several precious metal-loaded MgO catalysts are active in the formation of carbon nanotube (CNT) by the chemical vapor deposition (CVD) of methane. The catalysts were prepared with nine metals (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt) by impregnation onto a high surface area MgO. CNT synthesis was carried out in the temperature range from 600 °C to 1000 °C after reduction with H2 at 800 °C.The amount of carbon deposited and crystallinity in the produced CNT on nine metals showed interesting tendencies: (i) The amount of carbon formed increased in the following transition series metals: first < second < third row transition elements, and (ii) the index of crystallinity IG/ID in Raman-bands of the CNTs decreased in the following order: 8 > 9 > 10 in the Periodic Table. Group 8 and 9 metals produced tube type fibers composed of the graphite layers arranged parallel to the fiber axis. On the other hand, carbon nanofibers (CNFs) grown on group 10 metals had herringbone type graphene sheets.  相似文献   

2.
CoMgAl layered double hydroxides were prepared as catalysts for the in situ synchronous growth of graphene and single-walled carbon nanotubes (SWCNTs) from methane by chemical vapor deposition. The as-calcined CoMgAl layered double oxide (LDO) flakes served as the template for the deposition of graphene, and Co nanoparticles (NPs) embedded on the LDOs catalyzed the growth of SWCNTs. After the removal of CoMgAl LDO flakes, graphene (G)/SWCNT/Co3O4 hybrids with SWCNTs directly grown on the surface of graphene and 27.3 wt.% Co3O4 NPs encapsulated in graphene layers were available. Further removal of the Co3O4 NPs by a CO2-oxidation assistant purification method induced the formation of G/SWCNT hybrids with a high carbon purity of 98.4 wt.% and a high specific surface area of 807.0 m2/g. The G/SWCNT/Co3O4 hybrids exhibited good electrochemical performance for pseudo-capacitors due to their high Co3O4 concentration and the high electrical conductivity of SWCNTs and graphene. In another aspect, the G/SWCNT hybrids can be used as excellent electrode materials for double-layer capacitors. A high capacity of 98.5 F/gelectrode was obtained at a scan rate of 10 mV/s, 78.2% of which was retained even when the scan rate increased to 500 mV/s.  相似文献   

3.
A family of layered double hydroxides (LDHs) with varied Fe contents were employed as catalyst precursors for the controllable bulk growth of few-layer graphene/single-walled carbon nanotube (G/SWCNT) hybrids in a fluidized-bed reactor through chemical vapor deposition of methane at 950 °C. All the G/SWCNT hybrids exhibited the morphology of SWCNTs interlinked with graphene layers. The purity, thermal stability, graphitization degree, specific surface area, and total pore volume of the G/SWCNT hybrids decreased with the increasing Fe contents in the LDH precursors. A high yield of 0.97 gG/SWCNTs/gcat can be achieved by tuning the Fe content in the FeMgAl LDHs after a 15-min growth. After the removal of the as-calcined FeMgAl layered double oxide flakes, a high carbon purity of ca. 98.3% for G/SWCNT hybrids was achieved when the mole ratio of Fe–Al is 0.05:1. The size and density of Fe nanoparticles decorated in the as-obtained G/SWCNT hybrids depend largely on Fe content in the FeMgAl LDH precursors. Furthermore, the mass ratio of graphene materials to SWCNTs in the as-prepared G/SWCNT hybrids can be well controlled in a range of 0.4–15.1.  相似文献   

4.
To greatly improve the electrocatalytic activity for methanol oxidation, high-quality exfoliated graphene decorated with uniform Pt nanocrystals (NCs) (3 nm) have been prepared by a very simple, low-cost and environmentally benign process. During the entire process, no surfactant and no halide ions were involved, which not only enabled very clean surface of Pt/graphene leading to excellent conductivity, but also greatly improved the electrocatalyst tolerance to carbon monoxide poisoning (Pt/graphene, If/Ib = 1.197), compared to commercial Pt/C (If/Ib = 0.893) catalysts. To maximize the electrocatalytic performance and minimize the amount of precious Pt, Pt–M/graphene (M = Pd, Co) hybrids have also been prepared, and these hybrids have much larger electrochemically active surface areas (ECSA), which are 4 (PtPd/graphene) and 3.3 (PtCo/graphene) times those of commercial Pt/C. The PtPd/graphene and PtCo/graphene hybrids also have remarkably increased activity toward methanol oxidation (If/Ib = 1.218 and 1.558). Furthermore, density functional theory (DFT) simulations demonstrate that an electronic interaction occurred between Pt atoms and graphene, indicating that graphene substrate plays a crucial role in regulating the electron structure of attached Pt atom, which confirmed that the increased efficiency of methanol oxidation was due to the synergetic effects of the hybrid structure.  相似文献   

5.
By using a catalytic growth procedure, carbon nanotubes (CNTs) are in situ formed on reduced graphene oxide (RGO) sheet at 600 °C. CNTs growing on RGO planes through covalent C–C bond possess lower interfacial contact electrical resistance. As a hybrid structure, the CNTs/graphene (CNT/G) are well dispersed into poly (dimethyl siloxane). The hybrid combining electrically lossy CNTs and RGO, which disperses in electrically insulating matrix, constructs an electromagnetic wave (EM) absorbing material with ternary hierarchical architecture. The interfacial polarization in heterogeneous interface plays an important role in absorbing EM power. When the filler loading is 5 wt.% and thickness of absorber is 2.75 mm, the minimum value of reflection coefficient and the corresponding frequency are −55 dB and 10.1 GHz, and the effective absorption bandwidth reaches 3.5 GHz. Therefore, combining the CNTs and graphene sheet into three-dimensional structures produces CNT/G hybrids that can be considered as an effective route to design light weight and high-performance EM absorbing material, while the effective EM absorption frequency can be designed.  相似文献   

6.
The growth of few-layer graphene (FLG) on carbon nanotubes (CNTs) was realized by using radio frequency hydrogen plasma sputtering deposition. A defect nucleation mechanism and a two dimensional growth model of the FLG were proposed, and field emission characteristics of these FLG–CNT hybrids were studied. They show excellent field emission properties, with a low turn-on electric field (0.98 V/μm) and threshold field (1.51 V/μm), large field enhancement factor (~3980) and good stability behavior, which are much better than those of the as-grown CNT arrays. The sharp edges and the low work function of the hybrids are believed to be responsible for the improved field emission properties.  相似文献   

7.
《Ceramics International》2016,42(7):8120-8127
In this paper, we described a simple two–step method for preparing needle-like CoNi2S4/CNT/graphene nanocomposite with robust connection among its ternary components. The prepared CoNi2S4/CNT/graphene nanocomposite has been thoroughly characterized by spectroscopic (Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy), X-ray diffraction and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy–energy dispersive spectroscopy and transmission electron microscopy) were employed to probe the morphological structures. The electrochemical properties of the as-prepared 3D architectures were investigated with three and two-electrode systems. In addition to its high specific capacitance (710 F g−1 at 20 A g−1), after charging–discharging for 2000 cycles, the electrode still maintained the capacity retention of about 82%. When used as the active electrode material for supercapacitors, the fabricated CoNi2S4–g–CNT nanostructure exhibited excellent specific capacitance and good rate capability, making it a promising candidate for next-generation supercapacitors.  相似文献   

8.
The effects of the reduction process and carbon nanotube (CNT) content on the supercapacitive behavior of electrodes made from flexible, binder-free thick graphene oxide (GO) papers are studied. It is found that the supercapacitive performance depends on several factors, including the presence of oxygenated functional groups after reduction, the interlayer spacing of the GO papers and their wettability with electrolyte. A moderate reduction of GO papers using hydrazine or annealing at a low temperature of 220 °C in air is proven to be more beneficial to achieve a high capacitance than the heavy reduction using a hydrazine vapor or a high temperature thermal treatment. The addition of a small amount of CNT, typically 12.5 wt.%, to form thick GO/CNT sandwich papers gives rise to an excellent specific capacitance of 151 F g?1 at a current density of 0.5 A g?1, as well as a retention ratio of 86% of the initial value after 6000 charge/discharge cycles at 5 A g?1. These improvements arise from the synergistic effects of the increased electronic conductivity and effective surface area associated with large electrochemical active sites due to the presence of intercalated CNT.  相似文献   

9.
This article addresses the deployment and characterization of a micro-scale aerosol-jet additive manufacturing technology to print graphene interconnects. A highly concentrated graphene ink with viscosity of 21 cP and 3.1 mg/ml graphene flakes with the lateral size below 200 nm was developed and adopted for this process to make a reliable and repeatable graphene deposition on the treated Si/SiO2 wafers. To this end, the influence of the most significant process parameters, including the atomizer power, the atomizer flow rate, and the number of the printed layers, on the size and properties of graphene interconnects was studied. Results show that the aerosol-jet printing process is capable of printing micro-scale graphene interconnects with variable widths in the range of 10–90 μm. These patterns, as the finest printed graphene patterns, with resistivity as low as 0.018 Ω cm and sheet resistance of 1.64 kΩ/□ may ease the development of miniaturized printed electronic applications of graphene.  相似文献   

10.
Graphene nanoribbons (GNRs) with tubular shaped thin graphene layers were prepared by partially longitudinal unzipping of vapor-grown carbon nanofibers (VGCFs) using a simple solution-based oxidative process. The GNR sample has a similar layered structure to graphene oxide (GO), which could be readily dispersed in isopropyl alcohol to facilitate electrophoretic deposition (EPD). GO could be converted to graphene after heat treatment at 300 °C. The multilayer GNR electrode pillared with open-ended graphene tubes showed a higher capacitance than graphene flake and pristine VGCF electrodes, primarily due to the significantly increased surface area accessible to electrolyte ions. A GNR electrode with attached MnO2 nanoparticles was prepared by EPD method in the presence of hydrated manganese nitrate. The specific capacitance of GNR electrode with attached MnO2 could reach 266 F g−1, much higher than that of GNR electrode (88 F g−1) at a discharge current of 1 A g−1. The hydrophilic MnO2 nanoparticles attached to GNRs could act as a redox center and nanospacer to allow the storage of extra capacitance.  相似文献   

11.
Self-organization of nitrogen-doped carbon nanotube (N-CNT) double helices was achieved by chemical vapor deposition (CVD) with Fe–Mg–Al layered double hydroxides (LDHs) as the catalyst precursor. The as-obtained N-CNT double helix exhibited a closely packed nanostructure with a catalyst flake on the tip, which connected the two CNT strands on both sides of the flake. A mechanism for the self-organization of N-CNTs into double-helix structures with a moving catalyst head is proposed. Effective carbon/nitrogen sources, high-density active catalyst nanoparticles, space confinement, and the precise chiral match between the two CNT strands are found to be crucial for the N-CNT double helix formation. The morphologies of N-CNTs can be well tuned between bamboo-like and cup-stacked structures, and a CNT/N-CNT heterojunction can be constructed by changing the carbon feedstock from C2H4 to CH3CN during CVD growth. N-CNT double helices with a length of 10–36 μm, a screw pitch of 1–2 μm, a CNT diameter of 6–10 nm, and a N-content of 2.59 at.% can be synthesized on the LDH catalysts by the efficient CVD growth.  相似文献   

12.
MgAl2O4/MgO eutectic fibers and rods have been grown successfully by the micro-pulling-down method, and the microstructures and optical characterizations of grown crystals were performed. MgAl2O4/MgO eutectic fibers of 0.3–1 mm in diameter and about 500 mm in length, and the rods having 5 mm in diameter with approximately 60 mm in length have been grown with the 6–120 mm/h of growth speed. The eutectic fibers showed homogeneous microstructure in which MgO fiber/whisker aligned to the growth direction in the MgAl2O4 (spinel) matrix. The grown crystals looked semitransparence under naked eyes. Optical and orientational characterizations were performed. The second phase of MgO was easily removed by selective etching with hydrochloric acid, and then porous single crystalline bodies were obtained.  相似文献   

13.
Mesoporous Al–SBA-15 has been synthesized by a hydrothermal method and used as a support for Mn/Al–SBA-15, Fe/Al–SBA-15, and Mn–Fe/Al–SBA-15 catalysts. XRD, N2 sorption, XPS, H2-TPR and activity tests have been used to assess the properties of catalysts. The Mn–Fe/Al–SBA-15 catalyst exhibited a higher SCR activity than Mn/Al–SBA-15 or Fe/Al–SBA-15 due to a synergistic effect between Mn and Fe. After the addition of Fe, the binding energy of Mn 2p3/2 on Mn–Fe/Al–SBA-15(573) decreased by about 0.4 eV and the Mn4 +/Mn3 + ratio decreased to 1.10. The appropriate Mn4 +/Mn3 + ratio may have a great effect on the reduction of NO over Mn–Fe/Al–SBA-15(573) catalyst.  相似文献   

14.
We have studied the synthesis of palladium nanoparticles over carbon nanotubes (Pd/CNT) and graphene (Pd/G) and we have tested their catalytic performance in the liquid phase chemoselective hydrogenation of para-chloronitrobenzene at room temperature. The catalysts were characterized by N2 adsorption/desorption isotherms, TEM, X-ray diffraction, infrared and X-ray photoelectron spectroscopy and ICP-OES. The palladium particle size on Pd/G (3.4 nm) and Pd/CNT (2.8 nm) was similar though the deposition was higher on Pd/G. Pd/CNT was more active which can be ascribed to the different surface area and electronic properties of the Pd nanoparticles over CNT, while the selectivity was 100% to the corresponding haloaniline over both catalysts and they were quite stable upon recycling.  相似文献   

15.
A one-pot solvothermal synthesis method was developed to prepare reduced graphene oxide (RGO) supported ferrite (MFe2O4, M = Mn, Zn, Co and Ni) hybrids using graphite oxide and metal ions (Fe3+ and M2+) as starting materials. The hybrids were characterized by X-ray powder diffraction, Raman spectra, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometer. It was shown that monodispersed MFe2O4 microspheres with uniform size were homogeneously deposited on RGO nanosheets. The influence of the metal ion concentration on the morphology of the hybrids was investigated. The hybrids possess considerable saturation magnetization, lower remanence and coercivity. Importantly, the obtained hybrids are effective adsorbents for removal of dye pollutants. It was found that over 92% rhodamine B (RhB) and 100% methylene blue (MB) with a concentration of 5 mg/L can be removed by the hybrids within 2 min when the concentration of the hybrids is 0.6 g/L. In addition, the hybrids also show enhanced photocatalytic activity in the degradation of RhB and MB. Benefiting from their bigger saturation magnetization, the hybrids can be easily separated from the solution by a magnet. This research would provide a new easy separating platform for wastewater decontamination.  相似文献   

16.
Graphene/ceramic composites are proposed by directly depositing graphene on the insulating Al2O3 particles by chemical vapor deposition without any metal catalysts. Carbothermic reduction occurring at the Al2O3 surface is vital during the initial stage of graphene nucleation and the graphene sheet can connect with neighboring sheets to completely cover Al2O3 particles. The quality and layer number of graphene on Al2O3 can be finely tailored by changing the growth temperature and gas ratio. Graphene coated Al2O3 (G-Al2O3) composites are used as effective fillers of stearic acid (SA) to increase the thermal transport property. By the optimization of the layer number of graphene, size of Al2O3 particles and ratio of G-Al2O3/SA in a quantitative, their thermal conductivities significantly increase up to 11 folds from 0.15 to 1.65 W m−1 K−1. The great improvement is attributed to the high thermal transfer performance of graphene and excellent wettability between graphene and SA. When the G-Al2O3/SA composites with the graphene coated porous Al2O3 foam, the thermal conductivity further reaches to 2.39 W m−1 K−1, and the corresponding latent heat is 38 J g−1. It demonstrates the potential applications of graphene in thermal transport and thermal energy storage devices.  相似文献   

17.
In this study, we report an efficient method for synthesis of well-graphitized hollow carbon nano-onions (CNOs). CNOs were firstly fabricated by chemical vapor deposition (CVD) method at 850 °C using an Fe–Ni alloy catalyst with diameters of 10–15 nm. Then hollow CNOs were obtained by annealing as-prepared CNOs at 1100 °C for 3 h. It is found that during the CVD growth, the presence of nickel retards the deactivation of Fe–Ni–C austenite, providing the possibility for the growth of up to two hollow CNOs from each alloy particle. The subsequent high-temperature annealing led to the escaping of the Fe–Ni alloy from the graphitic layers, and the re-catalysis of precipitation and graphitization of the carbon atoms previously dissolved in the alloy particle (Fe0.64Ni0.36) to form hollow CNOs. The hollow CNOs exhibit good performance as materials for electrochemical hydrogen storage, with a discharge capacity of 481.6 mAh/g under a current density of 500 mA/g, corresponding to a hydrogen storage capacity of 1.76 wt.%. Our results demonstrate that the hollow CNOs are promising materials as a storage medium for hydrogen as a fuel source.  相似文献   

18.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

19.
The formation of high-quality graphene layers on diamond was achieved based on a high-temperature annealing method using a Cu catalyst. Typical features of monolayer graphene were observed in the Raman spectra of layers formed by annealing of Cu/diamond heterostructures at 950 °C for 90 min. The coverage ratio of these graphene layers on diamond was estimated to be on the order of 85% by Raman mapping of the 2D peak. The sheet hole concentration and mobility values of the layers were estimated to be ~ 1013 cm 2 and ~ 670 cm2/Vs, respectively. These values are comparable to those previously observed for high-quality graphene layers on SiC.  相似文献   

20.
Direct growth of graphene on Al2O3 film is successfully achieved assisted with NiAl2O4 film on a SiO2 substrate by chemical vapor deposition at 800 °C. The Ni particles are first uniformly separated out on the substrate, and play an important role in capturing carbon atoms and accelerating the nucleation to grow high quality graphene rooting on insulating Al2O3 film. The thickness of graphene films can be tuned from two layers to few layers (<10) by changing growth time. The continuous graphene films exhibit extremely excellent electrical transport properties with a sheet resistance of down to 18.5 Ω sq−1. The graphene/Ni/Al2O3/SiO2 is used as the counter electrode of dye sensitized solar cell which achieves a photovoltaic efficiency of 7.62%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号