首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
钛合金表面磨粒流加工工艺研究   总被引:1,自引:0,他引:1  
本文以钛合金薄壁试片为基体材料,研究了磨粒流工艺对该类材料零件的表面加工特征。结果表明:磨粒流加工工艺对钛合金表面具有较好的加工效果,在沿磨料流动的方向上,试片边缘的磨削去除量大于中部。随着加工循环次数的增加,每个循环的平均磨削量有所下降,这与磨料温度升高所引起的黏度减小以及磨粒的钝化现象有关。扫描电镜形貌显示,试片表面呈极为细致的沟槽所组成的磨削状态。  相似文献   

2.
精密零件的微磨料气射流光整加工   总被引:2,自引:0,他引:2  
近年来,在非传统去毛刺加工方法中,微磨料气射流去毛刺由于初始成本低、生产效率高、灵活性强、无应力、无热影响区,在精密零件的光整加工中获得了广泛的应用。本文详细介绍了微磨料气射流用于光整加工去毛刺的加工原理、材料去除机理、去毛刺的工艺参数以及对棱边尺寸的影响,并列举了一些微磨料气射流在不同应用领域的加工实例。  相似文献   

3.
以马氏体不锈钢SUS 440C为加工对象,使用#3000碳化硅磨粒进行半固着磨粒和游离磨粒加工.半固着磨具与工件的接触采用面-面接触方式,半固着磨具使用SSB结合剂,磨粒重量浓度为60%,孔隙率为70%.游离磨粒加工中研具材料为球墨铸铁.两种加工方法中,加工开始10 min后工件表面粗糙度迅速由Ra 0.2 μm左右降低至Ra 0.07 μm以下,加工30 min后工件表面质量趋于稳定.工件表面质量主要取决于磨粒粒度与加工时间,加工载荷与磨具/研具转速的影响较小.半固着磨粒加工可获得比游离磨粒加工更高的表面质量.  相似文献   

4.
The performance of CBN tools in the machining of titanium alloys   总被引:1,自引:0,他引:1  
Advancements in the aerospace, nuclear and other industries require the enhanced in-service performance of engineering components. These requirements have resulted in the large scale development and use of heat-resistant and high-strength materials such as titanium alloys, which pose considerable machining problems. In this study on machining of titanium alloy using CBN tools, the machining performance was evaluated in terms of cutting force, specific cutting pressure, cutting temperature, chip strain and surface finish.  相似文献   

5.
An analysis of a polycrystalline diamond (PCD)-tipped tool after drilling 40,000 holes in aluminum (Al) 319 alloy under fully lubricated conditions is reported. It is found that aluminum adheres to the PCD tip surface during the machining process under lubricated condition. The aluminum transferring leads to poor surface finishing. Surface morphology analysis and element mapping suggests that the cobalt (Co) binder in the PCD tips is responsible for the adhesion of aluminum to the PCD surface, due to the chemical affinity between aluminum and cobalt. Approaches to prevent the adhesion of aluminum to the tool are discussed.  相似文献   

6.
Chip formation during dry turning of Ti6Al4V alloy has been examined in association with dynamic cutting force measurements under different cutting speeds, feed rates and depths of cut. Both continuous and segmented chip formation processes were observed in one cut under conditions of low cutting speed and large feed rate. The slipping angle in the segmented chip was 55°, which was higher than that in the continuous chip (38°). A cyclic force was produced during the formation of segmented chips and the force frequency was the same as the chip segmentation frequency. The peak of the cyclic force when producing segmented chips was 1.18 times that producing the continuous chip.The undeformed surface length in the segmented chip was found to increase linearly with the feed rate but was independent of cutting speed and depth of cut. The cyclic force frequency increased linearly with cutting speed and decreased inversely with feed rate. The cutting force increased with the feed rate and depth of cut at constant cutting speed due to the large volume of material being removed. The increase in cutting force with increasing cutting speed from 10 to 16 and 57 to 75 m/min was attributed to the strain rate hardening at low and high strain rates, respectively. The decrease in cutting force with increasing cutting speed outside these speed ranges was due to the thermal softening of the material. The amplitude variation of the high-frequency cyclic force associated with the segmented chip formation increased with increasing depth of cut and feed rate, and decreased with increasing cutting speed from 57 m/min except at the cutting speeds where harmonic vibration of the machine occurs.  相似文献   

7.
8.
9.
Use of ceramic tools for machining nickel based alloys   总被引:2,自引:0,他引:2  
The paper is the first of two dealing with the use of ceramic tool materials for the machining of nickel based alloys. While the second contribution presents the results of detailed machinability tests, involving a cross-section of current nitride, superhard and whisker reinforced ceramic tooling products, this first paper comprehensively reviews existing literature on the subject.

Following an assessment of tool wear characteristics, such as depth-of-cut notching and the underlying mechanisms involved, in particular the effects of applied mechanical stress and high interface temperatures, details are given of the composition, structure, physical properties and cutting performance of various state-of-the-art ceramic tool materials. Although only recently available commercially, whisker reinforced composite tools, comprising an alumina matrix with approximately 25% by volume silicon carbide whiskers, are reported to be capable of operating at cutting speeds up to 750 m/min on some nickel based alloys.  相似文献   


10.
Nowadays, conventional machining of WC-Co green compacts is used in industries in order to achieve desired dimensions, complex geometries and good surface quality. However, conventional machining presents some problems, namely tool wear, tool breakage, chatter, vibration and deflection besides mechanically induced damage to the compact. Laser machining is a promising approach to machine WC-Co green compacts, since it is performed without contact and allows great flexibility for producing several geometries, high material removal rate, good surface quality and precision, also for complex shapes. It also allows the production of details smaller than 0.2 mm, hardly manufactured by conventional machining, due to the brittle nature of cutting tools of very small dimensions. Due to the abovementioned reasons, laser machining presents a great potential for lowering the production costs of cemented carbide tools.This work addresses the laser machining of WC-Co green compacts, using a Nd:YAG laser and performing different strategies and combinations of laser parameters to obtain different types of profiles (grooves, areas and specific geometries).Results showed that an effective laser machining of WC-Co green compacts is attained when using laser power of 3 W, scan speed of 128 mm/s, 8 passages and line spacing of 0.08 mm. These parameters were effective for obtaining around 800 μm depth geometries, where the addition of a finishing step (1.5 W, 256 mm/s and 8 passages) improved the quality of the edge of the machined geometry. The laser machined compacts were sintered using a SinterHIP process and no undesirable phases were detected, as eta-phase or graphite.  相似文献   

11.
Diamond coating tools have been increasingly used for machining advanced materials. Recently, a microwave plasma-assisted chemical vapor deposition (CVD) technology was developed to produce diamond coatings which consist of nano-diamond crystals embedded into a hard amorphous diamond-like carbon matrix. In this study, the nanocrystalline diamond (NCD) coating tools were evaluated in machining high-strength aluminum (Al) alloy. The conventional CVD microcrystalline diamond coating (MCD) tools and PCD tools were also tested for performance comparisons. In addition, stress distributions in diamond coating tools, after deposition and during machining, were analyzed using a 2D finite element (FE) thermomechanical model.

The results show that catastrophic failures, reached in all except one machining conditions, limit the NCD tool life, which is primarily affected by the cutting speed. In addition, coating delamination in the worn NCD tools is clearly evident from scanning electron microscopy (SEM) and force monitoring in machining can capture the delamination incident. At a high feed, coating delamination may extend to the rake face. Furthermore, SEM observations of coating failure boundaries show intimate coating-substrate contact. Though the NCD tools are inferior to the PCD tools, they substantially outperform the MCD tools, which failed by premature delamination. The diamond coating tools can have high residual stresses from the deposition and stresses at the cutting edge are highly augmented. Further machining loading causes the stress reversal pattern which seems to correlate with the tool wear severity.  相似文献   


12.
Influence of cutting edge radius on cutting forces in machining titanium   总被引:3,自引:0,他引:3  
The performance of machining titanium can be enhanced by using cutting tools with rounded cutting edges. In order to better understand the influence of rounded cutting edges and to improve the modelling of the machining process, their impact on active force components including ploughing forces and tool face friction is analysed. This paper presents experimental results of orthogonal turning tests conducted on Ti-6Al-4V with different cutting edge radii and changing cutting speeds and feeds. As an accurate characterisation method for the determination of the cutting edge radius is prerequisite for this analysis, a new algorithm is described which reduces uncertainties of existing methods.  相似文献   

13.
Titanium is a commonly used material in various critical applications such as aerospace and biomedical applications. In this article, for the first time in the literature, development and implementation of a novel plasma boronizing process on Tungsten Carbide (WC) cutting tools is introduced. Plasma boronizing on WC tools is performed with gas combination of 10% BF3, 40% Argon and 50% H2 at different temperatures and durations. Performance enhancements of plasma boronized WC tools on Titanium (Ti-6Al-4V) machining are investigated under various cutting conditions. It is found that new plasma boronizing of WC is a very cost effective solution for significantly increasing tool life in Titanium machining.  相似文献   

14.
In this paper, a force model for self-propelled rotary tool is presented. Conventional oblique cutting force predictions were reviewed and extended to predict the cutting forces generated during machining with the self-propelled rotary tools. The model presented is based on Oxley's analysis and was verified by cutting tests using a typical self-propelled tool. Good agreement was obtained between the predicted and the experimentally measured forces under a wide range of cutting conditions. The effect of different cutting conditions on the friction coefficient along the chip/tool interface and tool rake face normal force were also presented and discussed.  相似文献   

15.
介绍了一种加工中心刀具选配及切削参数生成系统。该系统通用性强、使用灵活,具有良好的开放性,可大大提高刀具选配及确定切削参数的效率。  相似文献   

16.
It is important to know cutting force components and active grain density during abrasive flow machining (AFM) as this information could be used to evaluate the mechanism involved in AFM. The results show that cutting force components and active grain density govern the surface roughness produced during AFM process. In this paper, an attempt has been made to study the influence of these two parameters, namely cutting force and active grain density, on the surface roughness. This study will help in developing a more realistic theoretical model.The present paper highlights a suitable two-component disc dynamometer for measuring axial and radial force components during AFM. The influence of three controllable variables (extrusion pressure, abrasive concentration and grain size) on the responses (material removal, reduction in surface roughness (Ra value), cutting forces and active grain density) are studied. The preliminary experiments are conducted to select the ranges of variables by using single-factor experimental technique. Five levels for abrasive concentration and six levels for extrusion pressure and abrasive grain size were used. A statistical 23 full factorial experimental technique is used to find out the main effect, interaction effect and contribution of each variable to the machined workpiece surface roughness. The machined surface textures are studied using a scanning electron microscope.  相似文献   

17.
This paper addresses the effects of bonds and grains of abrasive tools on the edge aspect of ground glass surface. Diamond grains and silicon carbide (SiC) grains combined with two bond types, i.e., resin and metal, were considered for this study. The surface edge characteristics were characterized using scanning electron microscope (SEM) and interferometer observations. In particular, the spectrum of arithmetic mean was investigated for distinguishing the different scales of analysis. Experimental results showed that the grinding forces vary sensitively with bond type and wheel velocity. Using diamond grains’ wheel, it was found that roughness level obtained with metallic bond is lower than that obtained with resin bond. However, using a resin-bonded wheel, two mechanisms of material removal were revealed according to grains’ type. (i) A partial ductile regime, i.e., ductile streaks and brittle fracture, obtained with diamond grains, and (ii) a fully ductile regime obtained with SiC grains. Thus, it was found that ground surface obtained using SiC grains’ wheel has a better roughness than that obtained using diamond grains wheel. Besides, SiC grains seem to lead to more marked streaks and form defects.  相似文献   

18.
High-speed milling of titanium alloys using binderless CBN tools   总被引:4,自引:0,他引:4  
The performance of conventional tools is poor when used to machine titanium alloys. In this paper, a new tool material, which is binderless cubic boron nitride (BCBN), is used for high-speed milling of a widely used titanium alloy Ti–6Al–4V. The performance and the wear mechanism of the BCBN tool have been investigated when slot milling the titanium alloy in terms of cutting forces, tool life and wear mechanism. This type of tool manifests longer tool life at high cutting speeds. Observations based on the SEM and EDX suggest that adhesion of workpiece and attrition are the main wear mechanisms of the BCBN tool when used in high-speed milling of Ti–6Al–4V.  相似文献   

19.
Machining of titanium at high cutting speeds such as from 4 m/s to 8 m/s is very challenging. In this paper, a new generation of driven rotary lathe tool was developed for high-speed machining of a titanium alloy, Ti–6Al–4V. The rotary tool was designed and fabricated based on the requirements of compact structure, sufficient stiffness and minimal edge runout. Cylindrical turning experiments were conducted using the driven rotary tool (DRT) and a stationary cutting tool with the same insert, for comparison in the high-speed machining of Ti–6Al–4V. The results showed that the DRT can significantly increase tool life. Increase in tool life of more than 60 times was achieved under certain conditions. The effects of the rotational speed of the insert were also investigated experimentally. Cutting forces were found to decline slightly with increase of the rotational speed. Tool wear appears to increase with the rotational speed in a certain speed range.  相似文献   

20.
Following a brief introduction to titanium alloys and their machinability, the cutting performance of a gamma titanium aluminide intermetallic (γ-TiAl) alloy: Ti–45Al–8Nb–0.2C wt% and a burn resistant titanium (BuRTi) alloy: Ti–25V–15Cr–2Al–0.2C wt%, is compared with creep feed grinding using SiC abrasive. The work utilised 2 separate L9 Taguchi fractional factorial arrays. Typically G-ratios were a factor of 10× greater for γ-TiAl than BuRTi, with on average 10% lower maximum power and 25% lower maximum specific energy for the γ-TiAl alloy. A combination of a moderately high wheel speed: 35 m/s, low depth of cut: 1.25 mm and low feed rate: 150 mm/min, produced the lowest average workpiece surface roughness (Ra1.4 μm). Workpiece surface integrity evaluation indicated that with lower operating parameter levels, in particular a wheel speed of 15 m/s, surfaces free of burn and cracks could be produced, while at higher wheel speeds: 35 m/s, extensive workpiece surface burn was evident, with the γ-TiAl alloy suffering extensive cracking. Microhardness measurements showed in some instances slightly increased workpiece surface hardness of around 50–60HK0.025 for the BuRTi alloy and 200HK0.025 for the γ-TiAl material over respective bulk hardness values of 375HK0.025 and 400HK0.025.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号