首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite films consisting of polypyrrole (PPy) and graphene oxide (GO) were electrochemically synthesized by electrooxidation of 0.1 M pyrrole in aqueous solution containing appropriate amounts of GO. Simultaneous chronoamperometric growth profiles and frequency changes on a quartz crystal microbalance showed that the anionic GO was incorporated in the growing GO/PPy composite to maintain its electrical neutrality. Subsequently, the GO was reduced electrochemically to form a reduced GO/PPy (RGO/PPy) composite by cyclic voltammetry. Specific capacitances estimated from galvanostatic discharge curves in 1 M H2SO4 at a current density of 1 A g?1 indicated that values for the RGO/PPy composite were larger than those of a pristine PPy film and the GO/PPy composite. In the case of 6 mg mL?1 GO for the preparation of GO/PPy, a high specific capacitance of 424 F g?1 obtained at the electrochemically prepared RGO/PPy composite indicated its potential for use as an electrode material for supercapacitors.  相似文献   

2.
By alternating deposition of graphene oxide (GO) sheets and silver nitrate by means of an electrostatic self-assembly method, a GO–Ag+ film was prepared. After thermal annealing, a graphene–silver nanoparticle (GE–Ag) multilayer film, with high transparency and electrically conductivity, was obtained. The transmittance of a film with four assembly cycles was 86.3%, at a wavelength of 550 nm, better than that of a pure GE film (73.8%). While the surface resistance was 97  ?1, much lower than that of a pure GE film (430  ?1). The Ag nanoparticles play a crucial role in improving the properties of the GE–Ag film, acting as conductive paths and light-trapping nanoparticles, which not only reduces the reflection of the film, but also prevents the GE sheets from aggregation and provides conductive paths between sheets, improving the electrical conductivity.  相似文献   

3.
Polytetrafluoroethylene (PTFE) is one of the most widely used solid lubricants but suffers from a high wear rate which limits its applications. Here we report four orders of magnitude reduction in the steady state wear rate of PTFE due to graphene additives. The wear rate of unfilled PTFE was measured to be ~0.4 × 10?3 mm3/N m which is reduced to ~10?7 mm3/N m by the incorporation of 10 wt% of graphene platelets. We also performed a head-to-head comparison of wear rate with graphene and micro-graphite fillers at the same weight fractions. In general, we find that graphene fillers gave 10–30 times lower wear rates than micro-graphite at the same loading fraction. Scanning electron microscopy analysis indicated noticeably smaller wear debris size in the case of graphene/PTFE composites indicating that graphene additives are highly effective in regulating debris formation in PTFE leading to reduced wear.  相似文献   

4.
《Ceramics International》2016,42(11):12644-12650
Hierarchical nickel oxide/graphene oxide (NiO/GO) and nickel oxide/graphene oxide/silver (NiO/GO/Ag) heterostructures were sucessfully fabricated as high-performance supercapacitors electrode materials by using a hydrothermal process and a photoreduction process. The experimental results showed that the NiO/GO/Ag heterostructure electrodes showed better electrochemical performance than those of NiO/GO and bare NiO nanosheets. The NiO/GO/Ag electrode exhibited a higher specific capacitance of 229 F g−1 at a current density of 1 A g−1, higher than that of 161 F g−1 for NiO/GO composites. Furthermore, NiO/GO/Ag electrode also showed good rate capability (still 200 F g−1 at 6 A g−1) and cycling stability (24% loss after 2000 repetitive cycles at a scan rate of 20 mV s−1). The enhanced capacitive performance of the NiO/GO/Ag composites was mainly attributed to the introduction of Ag nanoparticles, which increased the electrical conductivities of the composites, and promoted the electron transfer between the active components. This study suggested that NiO/GO/Ag composites were a promising class of electrode materials for high performance energy storage applications.  相似文献   

5.
The thermal conductive polyamide-6/graphene (PG) composite is synthesized by in situ ring-opening polymerization reaction using ε-caprolactam as the monomer, 6-aminocaproic acid as the initiator and reduced graphene oxide (RGO) as the thermal conductive filler. The generated polyamide-6 (PA6) chains are covalently grafted onto graphene oxide (GO) sheets through the “grafting to” strategy with the simultaneous thermal reduction reaction from GO to RGO. The homogeneous dispersion of RGO sheets in PG composite favors the formation of the consecutive thermal conductive paths or networks at a relatively low GO sheets loading, which improves the thermal conductivity (λ) from 0.196 W m−1 K−1 of neat PA6 to 0.416 W m−1 K−1 of PG composite with only 10 wt% GO sheets loading.  相似文献   

6.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

7.
Graphite oxide (GO)/ordered polyaniline (PANI) composites have been prepared through an in situ polymerization. TEM, XRD, FTIR and XPS analyses show that the PANI grew along the surface of exfoliated GO as a template to form a more ordered structure with high crystallinity during polymerization. Compared with pure PANI, both higher electrical conductivity and higher Seebeck coefficient of GO/PANI composites result from the increased carrier mobility, which is confirmed by Hall measurement. Strong interactions exist between graphene oxide and PANI, including electrostatic forces, hydrogen bonding and π–π stacking. There is no significant difference in thermal conductivity between GO/PANI composites and PANI. The maximum electrical conductivity and Seebeck coefficient of the composites reach 751 S m?1 and 28.31 μV K?1, respectively. The maximum thermoelectric figure of merit is up to 4.86 × 10?4, 2 orders of magnitude higher than that of pure PANI.  相似文献   

8.
The effects of the reduction process and carbon nanotube (CNT) content on the supercapacitive behavior of electrodes made from flexible, binder-free thick graphene oxide (GO) papers are studied. It is found that the supercapacitive performance depends on several factors, including the presence of oxygenated functional groups after reduction, the interlayer spacing of the GO papers and their wettability with electrolyte. A moderate reduction of GO papers using hydrazine or annealing at a low temperature of 220 °C in air is proven to be more beneficial to achieve a high capacitance than the heavy reduction using a hydrazine vapor or a high temperature thermal treatment. The addition of a small amount of CNT, typically 12.5 wt.%, to form thick GO/CNT sandwich papers gives rise to an excellent specific capacitance of 151 F g?1 at a current density of 0.5 A g?1, as well as a retention ratio of 86% of the initial value after 6000 charge/discharge cycles at 5 A g?1. These improvements arise from the synergistic effects of the increased electronic conductivity and effective surface area associated with large electrochemical active sites due to the presence of intercalated CNT.  相似文献   

9.
Cobalt core/graphite shell nanostructures anchored on graphene sheets have been prepared by a chemical vapor deposition process. Transmission electron microscope images show that the cobalt nanoparticles (10–30 nm) are encapsulated by a graphitic shell with a thickness of ~3 nm. Magnetic measurements reveal that the material has a typical ferromagnetic behavior with a saturation magnetization of 71.7 emu g?1 at room temperature.  相似文献   

10.
Nano graphene oxide (NGO) was produced by further refluxing graphene oxide (GO) sheets in HNO3, and carboxylic acid functionalized graphene oxide (GO–COOH) was obtained by a simple etherification reaction between GO and chloroacetic acid. The GO, GO–COOH and NGO sheets are combined with TiO2 nanorods by a two-phase assembling method, and confirmed by transmission electronic microscopy. The GO–TiO2, GO–COOH–TiO2 and NGO–TiO2 composites are used in a comparative study of photocatalytic H2 generation activity under UV light irradiation. The H2 generation rate of TiO2 nanorods was slightly increased from 15 to 30 mL h−1 g−1 by replacing oleic acid ligands with hydrophilic dopamine, and significantly increased to 105 mL h−1 g−1 after combining with GO sheets. The further comparative study shows that GO–COOH–TiO2 composite has higher H2 generation rate of 180 mL h−1 g−1 than that of GO–TiO2 and NGO–TiO2 composites.  相似文献   

11.
Suman Thakur  Niranjan Karak 《Carbon》2012,50(14):5331-5339
The reduction of graphene oxide (GO) by phytochemicals was investigated using aqueous leaf extracts of Colocasia esculenta and Mesua ferrea Linn. and an aqueous peel extract of orange (Citrus sinensis). The prepared GO and phytoextract reduced GO (RGO) were characterized by ultraviolet–visible spectroscopy, Raman spectroscopy and Fourier transform infrared analyses to provide a clear indication of the removal of oxygen-containing groups from the graphene and the formation of RGO. The extent of reduction was determined from elemental analysis. Formation of few layers of graphene was indicated by transmission electron microscopy. The obtained RGO exhibited good specific capacitance (17–21 Fg?1), high electrical conductivity (3032.6–4006 Sm?1) and high carbon to oxygen ratio (5.97–7.11).  相似文献   

12.
Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8 F g−1 at 2 mV s−1 in 6 mol L−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4 Wh kg−1 based on the total mass of the two electrodes in 1 mol L−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles.  相似文献   

13.
The demand for flexible and transparent barrier films in industries has been increasing. Learning from nature, borate ions were used to cross-link poly(vinyl alcohol) (PVA) and graphene oxide (GO) to produce flexible, transparent high-barrier composite films with a bio-inspired structure. PVA/GO films with only 0.1 wt% GO and 1 wt% cross-linker exhibited an O2 transmission rate <0.005 cc m−2 day−1, an O2 permeability <5.0 × 10−20 cm3 cm cm−2 Pa−1 s−1, and a transmittance at 550 nm >85%; thus, they can be used for flexible electronics. Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy indicated that the outstanding barrier properties are attributed to the formation of chemical cross-linking involving borate ions, GO sheets, and PVA, similar to the borate cross-links in high-order plants. Comparing our experimental data with the Cussler model, we found that the effective aspect ratio was significantly increased after cross-linking, suggesting that cross-linking networks connected GO with each other to form ultra-large impermeable regions. A feasible green technique, with potential for commercial production of barrier films for flexible electronics was presented.  相似文献   

14.
LiFePO4 nanoparticles were grown on nano-graphite platelet (NGP) using a simple chemical route. The material was used as the cathode in Li-ion rechargeable batteries and exhibited excellent cyclability and rate capability because of the easy electron transport in it. The electrochemical stability of the electrode was improved by the two-dimensional conductive network of the NGP. The resulting electrodes delivered a specific capacity of about 150 mA h g?1 at a current rate of 135 mA g?1 (~0.8 C) after 100 cycles with no capacity fade. At elevated current rates, the electrodes exhibited capacities of more than 100 mA h g?1 at a current density of 2000 mA g?1 (~12 C) without further incorporation of conductivity agents or coatings.  相似文献   

15.
Graphene-incorporated nitrogen-rich carbon composite with nitrogen content of ca. 10 wt.% has been synthesized by an effective yet simple hydrothermal reaction of glucosamine in the presence of graphene oxide (GO). The nitrogen content of carbon composite is nearly twice as high as that of hydrothermal carbon without graphene. GO is favorable for the high nitrogen doping in the carbon composite by the reaction between the glucosamine-released ammonia and GO. The hydrothermal carbon composite is further activated by KOH, and graphene in the activated carbon composite demonstrates a positive effect of increasing specific surface area, pore volume and electrical conductivity, resulting in superior electrochemical performance. The activated carbon composite with higher specific surface area and micropore volume possesses higher specific capacitance with a value of 300 F g−1 at 0.1 A g−1 in 6 M KOH aqueous solution in the two electrode cell. Larger mesopore volume and higher conductivity of the activated carbon composite will provide fast ion and electron transfer, thus leading to higher rate capacity with a capacitance retention of 76% at 8 A g−1 in comparison to the activated hydrothermal carbon without graphene.  相似文献   

16.
Graphene nanoribbons (GNRs) with tubular shaped thin graphene layers were prepared by partially longitudinal unzipping of vapor-grown carbon nanofibers (VGCFs) using a simple solution-based oxidative process. The GNR sample has a similar layered structure to graphene oxide (GO), which could be readily dispersed in isopropyl alcohol to facilitate electrophoretic deposition (EPD). GO could be converted to graphene after heat treatment at 300 °C. The multilayer GNR electrode pillared with open-ended graphene tubes showed a higher capacitance than graphene flake and pristine VGCF electrodes, primarily due to the significantly increased surface area accessible to electrolyte ions. A GNR electrode with attached MnO2 nanoparticles was prepared by EPD method in the presence of hydrated manganese nitrate. The specific capacitance of GNR electrode with attached MnO2 could reach 266 F g−1, much higher than that of GNR electrode (88 F g−1) at a discharge current of 1 A g−1. The hydrophilic MnO2 nanoparticles attached to GNRs could act as a redox center and nanospacer to allow the storage of extra capacitance.  相似文献   

17.
A large CoS-implanted graphene (G-CoS) film electrode was prepared using chemical vapor deposition followed by successive ionic layer absorption and reaction. HRTEM and AFM show that CoS nanoparticles are uniformly implanted on the graphene film. Furthermore, the G-CoS electro-catalytic electrode is characterized in a dye sensitized solar cells (DSSC) and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Ω cm2) and high exchange current density (J0~2.50 mA cm?2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. The comprehensive G-CoS synthesis process is a simple and scalable process which can easily adapt for large scale electro-catalytic film fabrication for several other electro-chemical energy harvesting and storage applications.  相似文献   

18.
Nitrogen (N)-doped graphene (NG) sheets were prepared using (NH4)2CO3 and an aqueous dispersion of graphene oxide (GO) by an eco-friendly hydrothermal reaction. The in situ produced ammonia played an important role in the simultaneous nitrogen doping, the reduction and exfoliation of GO. The (NH4)2CO3/GO mass ratio and reaction temperature were varied to investigate the effects on the N doping level. The elemental analysis determined from the X-ray photoelectron spectroscopy showed that the nitrogen content of the NG was about 10.1 at.% and the oxygen content decreased significantly due to the hydrothermal reduction of GO. The electrochemical performances of the NG sheets increased with increasing doped N content. The highest specific capacitance of 295 F g−1 at a current density of 5 A g−1 and the highest specific surface area of 412 m2 g−1 were observed with the sample processed at 130 °C. The retention of the specific capacitance was maintained at ∼89.8% after 5000 charge–discharge cycles. These results imply that NG sheets obtained by this simple eco-friendly approach are suitable for use in high performance energy storage electrode materials.  相似文献   

19.
An easy bottom–up method for the preparation of photoluminescent (PL) graphene quantum dots (GQDs) and graphene oxide (GO) has been developed by tuning the carbonization degree of citric acid and dispersing the carbonized products into alkaline solutions. The GQDs are nanosheets ~15 nm in width, and 0.5–2.0 nm in thickness. They show a relatively strong (9.0%) PL quantum yield and an excitation-independent PL emission activity. In contrast, the GO nanostructures consist of sheets that are hundreds of nanometers in width and ~1 nm in height. They exhibit a relatively weak (2.2%) PL quantum yield and an excitation-dependent PL emission activity.  相似文献   

20.
Wei Lin  Jintang Shang  Wentian Gu  C.P. Wong 《Carbon》2012,50(4):1591-1603
The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films synthesized by thermal chemical vapor deposition was measured by a laser flash technique, and shown to be ~30 mm2 s?1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT films and the individual CNTs were ~27 and ~540 W m?1 K?1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube–tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing density was beneficial in increasing the collective thermal conductivity of the VACNT film; however, the increased tube–tube interaction in dense VACNT films decreased the effective thermal conductivity of the individual CNTs in the films. The tip-to-tip contact resistance was shown to be ~1 × 10?7 m2 K W?1. The study will shed light on the potential application of VACNTs as thermal interface materials in microelectronic packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号