首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report new developments on the chemical vapor deposition growth of 0.4 nm single-walled carbon nanotubes (SWCNTs) inside the linear channels of the aluminophosphate zeolite, AlPO4-5 (AFI), single crystals (0.4 nm-SWCNT@AFI). Ethylene (C2H4) and carbon monoxide (CO) were used as the feedstock. Polarized Raman spectroscopy was used to analyze the structure and quality of SWCNTs, both the radial breathing mode and G-band are much clearer and stronger than the samples grown by the old process which used template tripropylamine molecules for growing SWCNT@AFI. From the Raman spectra, it is clearly seen that the RBM is composed of two peaks at 535 and 551 cm−1. By using the pseudopotential module in Material Studio to calculate the Raman lines, the 535 cm−1 peak is attributed to the (5,0) SWCNTs and the 551 cm−1 peak to the (3,3) SWCNTs. The abundance of (4,2) is relatively small. Thermal gravity analysis showed that while the samples grown by CO display less than 1 wt% of carbon, for the samples heated in C2H4 atmosphere the weight percentage of SWCNTs is around 10%, which implies ∼30% of the AFI channels are occupied with SWCNTs, a significant increase compared with the previous samples.  相似文献   

2.
It is demonstrated that 0.1 wt% of multi-walled carbon nanotubes (MWCNTs) or single-walled carbon nanotubes (SWCNTs) added to zirconia toughened alumina (ZTA) composites is enough to obtain high hardness and fracture toughness at indentation loads of 1, 5, and 10 kg. ZTA composites with 0.01 and 0.1 wt% of MWCNTs or SWCNTs were densified by spark plasma sintering (SPS) at 1520 °C resulting in a higher hardness and comparable fracture toughness to the ZTA matrix material. The observed toughening mechanisms include crack deflection, pullout of CNTs as well as bridged cracks leading to improved fracture toughness without evidence of transformation toughening of the ZrO2 phase. Scanning electron microscopy showed that MWCNTs rupture by a sword-in-sheath mechanism in the tensile direction contributing to an additional increase in fracture toughness.  相似文献   

3.
Uniform web-like films consisting single-walled carbon nanotubes (SWCNTs) were deposited on a silicon substrate using the chemical vapor deposition (CVD) of ferrocene–ethanol mist at atmospheric pressure (∼ 1 atm). The tiny mist was generated using a high-frequency ultrasonic vibration. The effects of various parameters including deposition position in the reactor, temperature, ferrocene/ethanol ratio, flow rate of carrier gas (argon), and deposition time on the formation of SWCNTs was investigated using high-resolution scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The worm region outside the furnace was found to be a suitable position for the formation of SWCNT films. The furnace temperature and the flow rate of carrier gas were found to determine the diameter and crystallinity of nanotube. The ferrocene concentration in ethanol strongly influenced the amount of impurity particles in the material. Moreover, the intensity of metallic tail in D-band was found to decrease with increasing the flow rate, showing a possibility of the formation of semiconducting SWCNTs. Results of this study can be used to improve understanding of the growth of SWCNTs by floating catalyst CVD of alcohol mist.  相似文献   

4.
Nitrogen-doped single walled carbon nanotubes (SWCNTs) have been synthesized via the thermal decomposition of ferrocene using different ratios of acetonitrile/ethanol feedstock mixtures during the chemical vapor deposition process. The experiments were performed at 950 °C and 2 bar. The concentration of acetonitrile in the mixtures was varied from 0% to 100%. High resolution transmission electron microscopy and Raman spectroscopical measurements revealed the formation of SWCNTs for all mixtures. X-ray photoelectron spectroscopical analysis show nitrogen doping levels of up to 2 at.%. The doping levels increase as the acetonitrile concentration increases. The nitrogen incorporation is predominantly in the pyridine form. Electrical conductivity measurements show the dependence of conductivity as a function of nitrogen incorporation in the SWCNTs.  相似文献   

5.
Single-walled carbon nanotubes (SWCNTs) were successfully grown on calcined stainless steel wires at 700 °C using CO as the carbon source. By contrast, the raw stainless steel wires produced only necklace-like multi-walled carbon nanotubes. Photoluminescence spectroscopy studies showed that SWCNTs grown from calcined stainless steel have a narrow diameter distribution and a high chiral selectivity of (6,5) nanotubes. The pre-growth heat treatment of the stainless steel leads to formation of iron and chromium oxides. The reduction of iron oxide results in formation of Fe nanoparticles which, anchored by chromium oxide, account for the chiral-selective growth of SWCNTs.  相似文献   

6.
The efficient functionalization of large quantities of carbon nanotubes entangled in a non-woven fashion into bucky-papers has been demonstrated through exposure to hard X-rays generated by a synchrotron source. The X-ray beam solely functionalized the carbon nanotube outer walls and an optimum X-ray exposure energy between 1048 J cm−2 and 2096 J cm−2 has been found to achieve maximum hydroxyl group density. Sol–gel reaction between a commercial fluoro-silane and the hydroxyl-modified carbon nanotubes was successfully performed resulting in an even distribution of fluoride atoms on the carbon nanotube surface, opening the way for the mass production of functionalized carbon nanotubes.  相似文献   

7.
The effects of high laser fluence on the properties of CNx thin films prepared by reactive pulsed laser (KrF excimer laser, λ=248 nm, τFWHM=30 ns) ablation at two different N2 gas pressures were investigated. A variety of analytical techniques have been used to characterize the structure and properties of the deposited films: X-ray photoelectron spectroscopy; X-ray diffraction; scanning electron microscopy; energy dispersive X-ray spectroscopy; Fourier transform infrared; and Rutherford backscattering spectroscopy. Analysis of these data shows the existence of a certain amount of covalent C–N single bonds and a nitrogen content up to 44%. The results also show the presence of covalent C≡N triple bonds in the film deposited at high nitrogen pressure (50 Pa).Comparison with the films deposited by XeCl excimer laser (λ=308 nm, τFWHM=30 ns), at the same experimental conditions, will also be presented.  相似文献   

8.
Hemoglobin (Hb) was used as a catalyst for the growth of single-walled carbon nanotubes (SWCNTs). Hb was deposited onto a hydrophilic treated substrate by spin coating method. After oxidation at 800 °C, protein chains were decomposed and iron oxide nanoparticles remained with an average diameter of 2.29 nm. High quality SWCNTs were synthesized with an average diameter of 1.22 nm. The protein chains prevent iron atoms aggregation and so the size of the nanoparticles is smaller than that from ferritin-like proteins.  相似文献   

9.
In this paper, we present the optimization of single-walled carbon nanotubes (SWCNTs) by acid-treatment, solution ultrasonication time and dispersion in photoactive layer for efficient organic solar cells. After non-covalently adhering with poly(3-hexylthiophene) (P3HT), pre-functionalized SWCNTs were blended into the composites of P3HT and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as photoactive layer, and a maximum power conversion efficiency (PCE) of 3.02% with a short-circuit current density of 11.46 mA/cm2 was obtained from photovoltaic cell indium-tin oxide (ITO)/poly(ethylene-dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/P3HT:PCBM:SWCNTs/Al with an optimum 0.3 wt% SWCNTs in P3HT:PCBM:SWCNTs nanocomposite, the PCE can be enhanced by more than 10% as compared to the control device ITO/PEDOT:PSS/P3HT:PCBM/Al. The performance improvement by incorporating with functionalized SWCNTs is mainly attributed to the extension of excitons dissociation area and fastening charge carriers transfer across the active layer.  相似文献   

10.
In this research we describe the synthesis and characterization of composite materials based on multiwalled carbon nanotubes and protoporphyrin IX. We compare the results of using three types of carbon nanotubes: pristine (diameter < 10 nm), acid functionalized (diameter < 10 nm), and nitrogen doped carbon nanotubes (diameter ≈ 20 nm). Carbon nanotubes were mixed with protoporphyrin IX via two simple and straightforward methods using sonication, or heating-stirring. The characterization of the composites was done by Raman spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, ultraviolet-visible and fluorescence spectroscopy and infrared spectroscopy. A diversity of coatings of the nanotubes by protoporphyrin were obtained depending on the type of nanotube used or the method of synthesis. Some carbon nanotubes increased their diameter up to 40% after the reaction with protoporphyrin. Percentages by weight up to 20% of protoporphyrin were measured by thermogravimetric analysis. We obtained experimental evidences by different techniques of the electronic interaction and the formation of covalent bonds between both constituents, above all for the composites using nanotubes < 10 nm in diameter. Some of these evidences were ~ 98% of fluorescence quenching, reduction in the intensity of the absorption bands in ultraviolet visible spectroscopy, strong reduction in the intensity of some bands in Raman spectroscopy, red and blue shifts, as well as the presence of new absorption bands in infrared spectroscopy. Nitrogen doped carbon nanotubes showed low chemical reactivity to protoporphyrin IX, perhaps due to their lower acceptor character as they could have charge transfer from nitrogen dopants to the nanotube network, or because of their metallic character.  相似文献   

11.
《Ceramics International》2017,43(8):6008-6012
The variation of the chemical composition and properties of PZT films as a function of oxygen pressure and laser fluence during pulsed laser deposition is used to tune the electrical properties of the PZT thin films. It is found that the deposition using a 248 nm laser fluence of 1.7 J/cm2 and an oxygen pressure of 400 mtorr results the PZT films very similar to that of target material. Changing the laser fluences or oxygen pressure, affects the lead content of the deposited film. In the range of oxygen pressure 50–200 mtorr, the Zr/Zr+Ti and Ti/Zr+Ti ratio varies with oxygen pressure while the Pb/Zr+Ti ratio is almost uniform. Using oxygen pressure as a control parameter to tune the chemical compound and electrical properties of the deposited PZT films, the remnant polarization of the PZT films is tuned in the range of 6.6–42.2 µC/cm2, the dielectric constant is controlled in the range of 29–130, and the piezoelectric constant d33 is controlled in the range of 3.82–4.96 pm/V for a 40 nm thick PZT film.  相似文献   

12.
Shigekazu Ohmori  Takeshi Saito 《Carbon》2012,50(13):4932-4938
The electrochemical capability of single-wall carbon nanotube (SWCNT) electrodes is investigated to establish their reliability in practical applications. Direct current (DC) voltage of +10 V is applied across the SWCNT anode and Pt cathode in water, and the electrochemical fracturing behavior of SWCNTs is analyzed using transmission electron microscopy and atomic force microscopy. A considerable number of short SWCNTs, with lengths of less than 200 nm, are observed to be electrochemically generated. This result suggests that the anodic corrosion of SWCNTs occurs even in water, a non-electrolyte liquid. Raman spectroscopy and a comparison study of the anodization behavior of SWCNTs with narrow (0.9 nm) and wide (1.8 nm) diameters indicate that the durability of narrow SWCNTs is lower than that of the wide SWCNTs.  相似文献   

13.
Single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) have been controllably synthesized by an arc discharge in different atmosphere using petroleum coke as carbon source. The morphology and properties of two kinds of carbon nanotubes (CNTs) synthesized with Fe as catalyst were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, UV–visible spectroscopy, inductively coupled plasma optical emission spectrometer, thermogravimetric analysis and infrared spectroscopy. In the He gas atmosphere only SWCNTs were found to be synthesized by arc discharge in contrast to the case in Ar gas atmosphere in which only DWCNTs were formed, In addition, properties of solar cells based on both kinds of CNTs and n-type Si are examined under illumination of light emission diode (LED). It is found that the performance of solar cells depends significantly on the type of CNTs, i.e., SWCNTs-based solar cells show better performance under LED illumination with wavelengths in the range of 400–940 nm than the case of DWCNTs which exhibit high performance under illumination of the 1310 nm infrared light.  相似文献   

14.
Design and fabrication of tin dioxide/carbon composites with peculiar nanostructures have been proven to be an effective strategy for improving the electrochemical performance of tin dioxide-based anode for lithium-ion batteries, and thus have attracted extensive attention. Herein, we have successfully prepared a uniquely three-dimensional and interweaved wire-in-tube nanostructure of nitrogen-doped carbon nanowires encapsulated into tin dioxide@carbon nanotubes, denoted as NCNW@void@SnO2@C, via a facile and novel approach for the first time. Interestingly, one-dimension void space located between nitrogen-doped carbon nanowires and innermost wall of tin dioxide@carbon tubes is also formed. The possible formation mechanism of wire-in-tube nanostructure is also discussed and determined by transmission electron microscopy, X-ray diffraction measurement, laser Raman spectroscopy and X-ray photoelectron spectroscopy characterizations. This unique NCNW@void@SnO2@C fully combines all the advantages of using a three-dimensional architecture, hollow structure, carbon coating, and a mechanically robust carbon nanowires support, thus exhibiting an excellent electrochemical performance as promising anode materials for lithium-ion batteries. A high reversible capacity of 721.3 mAh g−1 can be remained even after 500 cycles at a current density of 200 mA g−1, as well as a capacity of 456.7 mAh g−1 is obtained even at 3000 mA g−1.  相似文献   

15.
Carbon nanotubes (CNTs) are extensively incorporated as reinforcement into polymeric materials due to their extraordinary properties. The antioxidant ability of CNTs in high density polyethylene (HDPE) was studied. Single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) were involved to investigate the influence of wall number and surface functionalization of CNTs on their antioxidant behavior in HDPE. Based on measurements of the oxidation induction temperature and oxidation induction time of CNT/HDPE composites, it is found that the antioxidant ability of the three kinds of CNTs is in the following order: MWCNTs-OH > MWCNTs > SWCNTs. The antioxidant ability and mechanism of CNTs are further examined by electron spin resonance spectra and Raman spectra. It is observed that the antioxidant behavior of CNTs obeys a free radical scavenging mechanism. The order of the radical scavenging efficiency and the defect concentration for CNTs are in good agreement with that of their antioxidant ability in HDPE. With more walls and surface hydroxyl groups, the CNTs have more structural defects and exhibit higher antioxidant ability. The study raises the possibility that CNTs can improve antioxidant properties as well as mechanical properties of polymer matrix.  相似文献   

16.
In this study, single-walled carbon nanotubes were combined with graphene oxide nanosheets in aqueous dispersion and then chemically reduced to form the carbon nanotube/graphene (CNT/G) composite as electrodes for capacitive deionization (CDI). The structure of the CNT/G composite was highly porous, with single-walled carbon nanotubes (SWCNTs) sandwiched between graphene sheets that functioned as spacers and provided diffusion paths for smooth and rapid ion conduction. The associated increase in the electrical double-layer capacitance enhanced capacitive deionization performance. The CNT/G composite achieved a specific capacitance of 220 F/g and an electrosorption capacity of 26.42 mg/g with 100% regeneration, showing great potential as a high performance electrode material in CDI applications.  相似文献   

17.
In2O3 nanoparticles are coated on the surfaces of single-walled carbon nanotubes (SWCNTs) by a successive ionic layer adsorption and reaction process. The thickness of the In2O3 nanoparticle film is tuned by controlling the number of coating cycles. The electric field around the In2O3-coated SWCNTs is compared with that of pristine SWCNTs. Field enhancement of the In2O3-coated SWCNTs is confirmed by conductive atomic force microscopy at low electric field (contact mode: 1 V to −1 V) and also field emission (FE) analysis at high electric field (0–4.2 V/μm). The uniformity and emission stability are also measured via FE analysis. Near infrared and X-ray photoemission spectroscopy data are suggested to explain the charge transfer, bandgap change between the In2O3 nanoparticles and SWCNTs, and the electric field enhancements in the In2O3-coated SWCNTs at both low and high electric field.  相似文献   

18.
We observed a huge volume expansion of aligned single walled carbon nanotube (SWCNT) arrays accompanied by structural transformation during electrical breakdown in vacuum. The SWCNT arrays were assembled between prefabricated palladium source and drain electrodes of 2 μm separation on a silicon/silicon dioxide substrate by dielectrophoresis. At high electrical field, the SWCNT arrays erupt into a large mushroom-like structure. Systematic studies with controlled electrical bias show that above a certain field the SWCNTs swell and transform to nanoparticles and flower-like structures with a small volume increase. Further increases in electrical bias and repeated sweeping results in their transformation into amorphous carbon as determined from scanning electron microscopy and transmission electron microscopy (TEM). Cross-sectional studies using a focused ion beam and TEM show the height of a 2–3 nm SWCNT array increased to about 1 μm with a volume increase of ~400 times. Electron energy loss spectroscopy reveals that graphitic sp2 networks of SWCNT are transformed predominantly to sp3. The current–voltage measurements also show an increase in the resistance of the transformed structure.  相似文献   

19.
The rapid growth method for vertically aligned, single walled carbon nanotube (SWCNT) arrays on flat substrates was applied to a fluidized-bed, using ceramic beads as catalyst supports as a means to mass produce sub-millimeter-long SWCNT arrays. Fe/Al2Ox catalysts were deposited on the surface of Al2O3 beads by sputtering and SWCNTs were grown on the beads by chemical vapor deposition (CVD) using C2H2 as a feedstock. Scanning electron microscopy and transmission electron microscopy showed that SWCNTs of 2–4 nm in diameter grew and formed vertically aligned arrays of 0.5 mm in height. Thermogravimetric analysis showed that the SWCNTs had a catalyst impurity level below 1 wt.%. Furthermore, they were synthesized at a carbon yield as high as 65 at.% with a gas residence time as short as <0.2 s. Our fluidized-bed CVD, which efficiently utilizes the three-dimensional space of the reactor volume while retaining the characteristics of SWCNTs on substrates, is a promising option for mass-production of high-purity, sub-millimeter-long SWCNT arrays.  相似文献   

20.
A facile and efficient covalent functionalization of single‐walled carbon nanotubes (SWCNTs) via peroxide‐mediated free radical covalent attachment and polymerization of zirconium acrylate is reported. The resulting covalently functionalized SWCNTs exhibit improved solubility in organic solvents. The covalently functionalized SWCNTs are characterized by cross polarization magic angle spinning 13C NMR, differential scanning calorimetry, thermogravimetric analysis, x‐ray diffraction, Raman, and infrared spectroscopy. Infrared spectroscopy reveals that carboxylate groups of covalently attached ionomers chelate with zirconium ions and the participating carboxylate groups may be from different ionomer chains leading to cross‐linking the chains. The SWCNT topology, ionic clustering, and π‐electron clouds were explored by transmission electron microscopy. © 2014 American Institute of Chemical Engineers AIChE J, 60: 820–828, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号