首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper describes a new powder composition specially developed for selective laser sintering (SLS). The aim is to obtain a ferro powder that can be sintered without need for a (sacrificial) polymer binder and that results in quasi dense parts that do not need any post-processing like furnace sintering, infiltration or HIP. The powder is a mixture of different types of particles (Fe, Cu, Ni and Fe3P). The composition and mixture ratio are justified by using phase diagrams. The powder has been tested using an own developed Nd: YAG SLS machine. The influence of process parameters (laser power, scan velocity, scan spacing and scan strategy) and the microstructural characteristics have been investigated. Attention is devoted to the binding mechanism (liquid phase sintering, through melting) and to the quality of resulting parts (density, balling effect,…).  相似文献   

2.
Innovative powder preparation and post-processing techniques can be employed to obtain high density ceramic parts by means of indirect selective laser sintering. Thermally induced phase separation (TIPS) was used to produce polymer and polymer–ceramic composite particles. The effect of polymer concentration, cooling rate, stirring and alumina particles on polymer and polymer–ceramic composite particles was investigated. Homogeneous spherical alumina–polypropylene (PP) composite powder was synthesized by TIPS for selective laser sintering (SLS). Green Al2O3–PP component parts with a density of 34% could be produced by conventional SLS of the polymer under optimized laser power, scan speed, scan spacing and powder preheating temperature. Various post-processing techniques like pressure infiltration (PI), warm isostatic pressing (WIPing) or a combination of both were applied to increase the green density of the Al2O3–PP SLM parts. Infiltrating the open porosity green SLS parts with a 30 vol% alumina-powder based ethanol suspension allowed to increase the sintered density, i.e. after polymer debinding and pressureless sintering in air at 1600 °C, from 38 to 64% of the theoretical density (TD). WIPing of the SLS and SLS/infiltrated green parts at 135 °C and 64 MPa allowed raising the green density up to 93 and 83% TD and a sintered density up to 89 and 88% TD, respectively.  相似文献   

3.
选择性激光烧结成形温度场的研究进展   总被引:7,自引:1,他引:7  
胥橙庭  沈以赴  顾冬冬  余承业 《铸造》2004,53(7):511-515
选择性激光烧结技术与传统铸造工艺相结合,为快速制造某些难以用传统方法获得的铸件提供了有利途径.对于各种粉末材料在选择性激光烧结成形过程中温度场的模拟与预测,是合理选择其烧结工艺参数的基础.本文中综述了聚合物粉末、聚合物覆膜金属/陶瓷粉末和金属粉末在选择性激光烧结过程中的热物性参数变化规律及其相应的成形温度场分布,以利于激光选择性烧结各类粉末材料而精确成形零部件.  相似文献   

4.
1.IntroductionSelective laser sintering (SLS) is one of typical rapid prototyping (RP) technology. SLS adopts the idea of a delamination manufacturing, which is not limited by complicated degree of part shape and not needs any frock & mould, to directly fabricate three dimension (3D) solid parts with powder materials. Theoretically, any powder materials, which can felt each other after they are heated, may be SLS materi-als. Range of SLS materials have covered with polymer powder, cerami…  相似文献   

5.
目前微小零部件的制造方法很多,激光微成形即为其中一种。介绍了在激光选区烧结技术的基础上,结合微成形特点开发的激光微区烧结成形技术。该技术可对金属粉末进行直接微区烧结成形,所成形的金属微型零件强度高,不需后续处理,大大节省了从原材料到最终实体的时间,并具有环境污染小、材料利用率高、成形速度快和效率高的特点。  相似文献   

6.
Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.  相似文献   

7.
激光烧结成形金属材料及零件的进展   总被引:12,自引:1,他引:11  
介绍了激光选区烧结金属材料及其零件快速成形的发展和应用现状,分析了激光选区烧结金属粉末成形零件过程中存在的问题及可能解决的途径。讨论了激光选区烧结金属材料的发展方向。  相似文献   

8.
介绍了用于薄壁铝合金铸件的真空差压铸造工艺。该工艺具有装置简单、充型速度平稳可调、充型能力好、铸件质量高的特点。对该工艺作了深入研究 ,论述了其基本原理。结果表明该工艺的压力时间曲线具有优良的线性关系 ,与传统的重力铸造和真空吸铸相比具有优异的充型性能 ,非常适用于薄壁铝合金铸件的生产  相似文献   

9.
基于SLS塑料原型的金属零件的快速铸造   总被引:5,自引:1,他引:4  
利用选择性激光烧结(SLS)快速成型工艺烧结塑料原型,结合精密铸造技术制出了金属零件。研究了原型用塑料粉受热裂解燃烧特点,并据此制订了从计算机三维模型到金属零件的快速铸造工艺。描述了陶瓷型壳的制备和金属零件的铸造工艺,并对零件的精度进行了测量。  相似文献   

10.
Selective laser sintering (SLS) could manufacture complex parts rapidly which, however, have high porosity and low intensity. While the parts made by cold isostatic pressing have advantages of uniform structure without composition segregation, high-dimension precision and high density. However, it could not form high complex parts because of the difficulties in manufacturing bag. A combination of SLS and cold isostatic pressing is expected to use the advantages of the two methods and is an efficient way to make complicated parts rapidly. After SLS and cold isostatic pressing, dimensions of parts decrease and relative density increases. To predict final dimensions and density, the finite element simulations are performed for cold isostatic pressing. The results show the parts made from ball shape powder contract symmetrically. The simulation results agree with the achieved geometries within 4%. Comparisons are made with that parts made from irregular powder. The SEM pictures after SLS are also showed. This has an important indication to process of SLS and cold isostatic pressing forming.  相似文献   

11.
A dissolution–precipitation process was successfully developed to prepare nylon-12 coated carbon steel powders. The SEM and laser diffraction particle size analysis results show that the metal particles are well coated by nylon-12 resin; therefore, an effective method for preparing nylon-12 coated metal powders is provided. Green parts were formed from the coated powders by selective laser sintering (SLS) process, and when the nylon-12 content in the coated powder was 1.0 wt% and the applied laser energy density was 0.06 J/mm2, the SLS green parts had sufficient strengths for features as small as 0.1 mm to be built and post-processed, and relatively high dimensional accuracy. The SLS green parts were post-processed by binder decomposition and epoxy resin infiltration, and the obtained epoxy-infiltrated parts have the dimensional errors in the X, Y and Z directions of −0.30, −0.32 and −0.25% respectively, and the bend strength, bend modulus, tensile strength and impact strength of 93.4 MPa, 14.7 GPa, 70.3 MPa and 12.4 MPa respectively.  相似文献   

12.
How to directly fabricate metallic functional parts with selective laser sintering (SLS) process is a potential technique that scientists are researching. Existent problems during directly fabricating metal part by use of SIS are analyzed. For the sake of solving the problems, a new idea of adding self-propagating high-temperature synthesis (SHS) material into metallic powder material to form new type of SIS metallic powder material is put forward. This powder material can release controllable amount of heat during its interaction with the laser beam energy to reduce the requirement to laser power during directly sintering metallic part, to prolong the time of metallic liquid phase existing, and to improve the intensity and accuracy of SIS part. For this reason, SHS material‘s interaction with the CO2 laser beam energy is researched, which proves that CO2 laser beam energy may instantly ignite SHS reaction. On the basis of the above-mentioned researches, the effect of sintering the metal powder material mixing SHS material with CO2 laser is also researched,which shows: there is an optimal blending ratio of various material in the new metallic powder material. Under the optimal blending ratio and SIS process parameters, this new metallic powder material can indeed release amount of heat and SHS reaction may be controlled within the laser sintering. This research result makes it possible that the metallic part is directly sintered with small CO2 laser (less than 50W), which may greatly reduce the volume, cost and running expenditure of SIS machine, be propitious to application.  相似文献   

13.
Selective laser sintering (SLS) is a powder-based rapid prototyping process in which parts are built by selective sintering of layers of powder using CO2 laser. Nowadays, SLS is emerging as a rapid manufacturing technique, which produces functional parts in small batches, particularly in aerospace application and rapid tooling. Therefore, SLS prototypes should have high accuracy in order to satisfy functional requirements. Shrinkage is one of the major factors which influence the accuracy of the SLS parts. To compensate for shrinkage, the material shrinkage coefficient or scaling factor is to be calculated in each direction and is to be applied to STL file. The amount of shrinkage encountered is found to be governed by the process parameters during processing and cannot be kept constant as it is a usual practice in today's SLS technology. In the present work, the relationship between shrinkage and the various process parameters namely laser power, beam speed, hatch spacing, part bed temperature and scan length in SLS have been investigated. Cuboids with suitable dimensions are fabricated rather than fabricating long parts along X, Y and Z directions in order to study shrinkage as it is expected that the shrinkage along X, Y and Z direction is not independent. Optimum shrinkage conditions are obtained by maximizing signal-to-noise (S/N) ratio and analysis of variance (ANOVA) is used to understand the significance of process variables affecting shrinkage. Laser power and scan length are found to be most significant process variables influencing shrinkage in X- direction. Along Y-direction laser power and beam speed are the significant parameters and along Z-direction beam speed, hatch spacing and part bed temperature are found to be most significant factors influencing shrinkage. Empirical models for predicting shrinkage along X, Y and Z directions are derived using regression. Obtained results are validated and they are found in good agreement with experiments. One case study of bench marking part is also presented to show that shrinkage model developed in the present work confine more accurate parts.  相似文献   

14.
Solid freeform fabrication (SFF) is a manufacturing technology that produces parts directly from computer-aided design databases. Examples of the SFF approach are selective laser sintering (SLS) and selective laser reactive sintering (SLRS), both of which have the potential to directly produce structurally sound metallic or ceramic parts. The development of suitable materials systems that can optimize the SLS or SLRS processes are critical to this technology. For instance, nanocomposites, in which the constituents are mixed on a nanometer scale, have the potential to provide important advantages in the SLS and SLRS processes. One strategy is to design and develop nanocomposites in which one nanosize component has a lower melting point than the other nanosize component, either of which can serve as the matrix phase. The nanoscale dispersion of the low-melting component can aid the sintering process during SLS or SLRS. In this article, the philosophical basis for SLS and SLRS of nanocomposites is discussed. Conceptual design of nanocomposite systems and the SLS/SLRS results of a few exploratory systems are presented.  相似文献   

15.
采用HB1粉末作为SLS烧结对象,在HRPS_ⅢA型SLS激光快速成型机上进行烧结。讨论了如何应用SLS技术对传统的熔模铸造工艺进行改良,使生产周期大大缩短,成本大大降低;新工艺能够处理的零件可以是任意形状的,几乎不受其外形复杂程度的限制,从而使企业能够更快对市场做出反应,确保企业在现代和未来的市场竞争中处于更有利的地位。  相似文献   

16.
基于选择性激光烧结方法的金属零件快速制造技术研究   总被引:1,自引:0,他引:1  
史玉升  孙海宵  樊自田  黄乃瑜  黄树槐 《铸造》2003,52(10):749-752
主要研究了通过选择性激光烧结高分子原型件制造金属零件的工艺。通过采用真空压差铸造工艺。结合铸造型壳的制造,成功制造出金属零件。对基于SLS技术的精密铸造过程中的精度控制进行了研究分析,并提出了解决办法。  相似文献   

17.
Selective laser sintering (SLS), as a kind of additive manufacturing technology, which uses a laser beam to scan and heat powder material layer by layer to form parts (models), is widely used in the field of casting, mainly for preparing casting coated sand cores, investment casting patterns, etc. The SLS technique facilitates rapid casting and shortens the casting production periods by eliminating mold preparation. In this study, we reached conclusions for the basic principles and characteristics of SLS methods, and focused on the research status, key technology and development trend of SLS in the fields of forming coated sand-casting molds and investment casting patterns.  相似文献   

18.
A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting of the binder (CuSn) but non-melting of the cores of structural metal (Cu) proves to be a feasible mechanism for laser sintering of this powder system. The microstructural evolution of the sintered powder with variation of laser processing parameters was presented. High sintering activities and sound densification response were obtained by optimizing the laser powers and scan speeds. Using a high laser power accompanied by a high scan speed gives rise to baUing effect. At a high laser power with a slow scan speed the sintering mechanism may change into complete melting/solidification, which decreases the obtainable sintered density. The role of additive phosphorus in the laser sintering process is addressed. Phosphorus can act as a fluxing agent and has a preferential reaction with oxygen to form phosphatic slag, protecting the Cu particles from oxidation. The phosphatic slag shows a concentration along grain boundaries due to its light mass as well as the short thermal cycle of SLS.  相似文献   

19.
3D finite element model of nylon 6/Cu composite powder is established for the selective laser sintering (SLS) process, and the factors of radiation, convection and thermal physical parameters highly nonlinear with temperature are taken into account. The load of moving heat source at different time and locations are carried out by the technique of element birth/death with ANSYS Parametric Design Language (APDL), and the dynamic distribution of thermal stress field in SLS is simulated with the method of indir...  相似文献   

20.
纳米材料激光选择性烧结成形的研究   总被引:13,自引:0,他引:13  
纳米材料由于颗粒尺寸微小,致使其产生一些特异的性能,在应用过程中,把纳米粉末材料成形为大体积的材料及成形纳米零件产生了巨大的困难,激光选择性地成形纳米材料是利用激光烧结能量信号,能迅速加热,剧冷的特性,最大限度地控制纳米材料在烧结过程中颗粒生长的纳米材料成形的方法。本研究中,在激光选择性烧结成形纳米材料Al2O3的基础上,对纳米材料烧结成形过程中产生的问题进行了分析与探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号