首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yan Wang  Zixing Shi  Junrong Yu  Lei Chen  Jing Zhu  Zuming Hu 《Carbon》2012,50(15):5525-5536
The extent of oxidation of graphite oxide (GO) was tailored by adjusting the amount of oxidant during oxidation. The characteristics of GOs with different degrees of oxidation and their corresponding exfoliated GO nanosheets (GONS) were investigated. It was found that the less oxidized GONS possessed 3–4 layers with much fewer structural defects. Mechanical testing of the resultant poly(vinyl alcohol)-based composites demonstrated that the less oxidized GONS was more effective than fully oxidized single-layered GONS in terms of reinforcing polymers. The reinforcement effect was discussed and confirmed by the Halpin–Tsai model. The results may provide an alternative for the fabrication of low-cost and high-performance graphene/polymer composites.  相似文献   

2.
Binary composite of graphene/poly(ethylene oxide) (PEO) with microwave absorption property is prepared by in situ reduction process. Graphite oxide (GO) is prepared from flake graphite by modified Hummers' method and further dispersed in distilled water to get GO solution. Then, PEO powder is slowly added into GO solution to get GO/PEO solution, and graphene/PEO composites is prepared via a facile and quick reduction process in GO/PEO solution. PEO and graphene/PEO composites are characterized by scanning electron microscopy, atomic force microscopy, thermo gravimetric analysis, and vector network analyzer. The results show that graphene is uniformly dispersed in PEO matrix because GO and PEO can be uniformly dispersed at molecular level due to their water‐solubility and the agglomeration of graphene can be prevented by PEO macromolecular chains during in situ reduction process. Graphene/PEO composite has better thermal stability than PEO, which can be explained by the graphene restoration of sp2 bonded carbon structure. Meanwhile, graphene/PEO composite shows excellent microwave absorption property at low grapheme content. The minimum reflection loss of graphene/PEO composite is up to −20.0 dB when the content of graphene is only 1 wt%. POLYM. COMPOS., 35:461–467, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
《Applied Clay Science》2010,48(3-4):444-447
Poly (ethylene oxide) (PEO), polyvinylpyrrolidone (PVP), methyl cellulose (Mcel), poly [oligo(ethylene glycol)-oxalate] (POEGO), poly[oxymethylene-(oxyethylene)] (POMOE), and poly[bis-(methoxyethoxyethoxy)phosphazene] (MEEP) were intercalated into hectorite. The intercalated hectorites were characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and infra-red spectroscopy. The interlayer expansion depended on the amount of polymer added as well as on its dimension. The polymer-intercalated materials exhibited higher thermal stability when compared to the bulk polymers.  相似文献   

4.
A number of functionalized graphite oxides were prepared by treatment of graphite oxide (GO) with organic isocyanates. These isocyanate-treated GOs (iGOs) can then be exfoliated into functionalized graphene oxide nanoplatelets that can form a stable dispersion in polar aprotic solvents. Characterization of iGOs by FT-IR spectroscopy and elemental analysis suggested that the isocyanate treatment results in the functionalization of the carboxyl and hydroxyl groups in GO via formation of amides and carbamate esters, respectively. The degree of GO functionalization can be controlled via either the reactivity of the isocyanate or the reaction time. When used with functionalized isocyanates, the described methodology allows for the elaboration of graphene oxide nanoplatelets with different surface functional groups.  相似文献   

5.
There is great interest in the use of graphene and derivatives in the production of polymer nanocomposites as it provides improvements in the properties of the materials to which they are associated. Such improvements depend heavily on filler dispersion and the interaction between the nanomaterials and the matrix. This work aimed to study the compatibility of graphene oxide (GO) with a poly(ethylene terephthalate) matrix. For this, graphite was modified using Hummers method, using reaction times of 3 and 6 h. The obtained GO was functionalized with amine, amide, and magnetite groups (FGO). The effects of the oxidation degree, functionalization and concentration of the nanofillers on the dispersion and consequently on the properties of the polymer nanocomposites were evaluated. The nanocomposites were synthesized by the solid–solid deposition method followed by the melt mixing technique. It was observed that lower concentrations of nanofiller associated with the lower degree of oxidation and functionalization improved the interaction of the nanofillers with the matrix, which resulted in better mechanical properties under tensile stresses for strain at break, maximum stress, Young's modulus and toughness. It was also observed that the glass transition and crystallization of nanocomposites increased due to a nucleating effect of the nanofillers.  相似文献   

6.
In this study, graphene nanoplatelets (GNPs) were incorporated into poly(vinylidene fluoride) (PVDF), poly(ethylene oxide) (PEO), and PVDF/PEO blends using solution casting method in order to achieve binary and ternary polymer nanocomposites. The focus of the work is on the compatibilizing effects of the GNPs on partially miscible PVDF/PEO blends. X-ray diffraction method, rheological measurements, scanning electron microscopy (SEM), and atomic force microscopy observations enabled us to track the dispersion state and localization of the graphene nanosheets in the nanocomposites. The results exhibited that the nanoplatelets were preferentially distributed through the PVDF phase and/or at the interface of the PVDF/PEO phases. Evaluation of the wetting parameter for the PVDF/PEO/GNPs nanocomposite also verified better affinity of the selected nanofiller with the PVDF component. Extend of the miscibility in the nanocomposites was studied by a well-known rheological method. A tangible increment in binodal (Tb) and spinodal (Ts) decomposition temperatures by addition of a very low content of the GNPs (0.5 wt %) revealed well-defined compatibilization effects of the graphene on this binary polymer blend. SEM images at different temperatures confirmed the rheologically determined liquid–liquid phase diagram. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48017.  相似文献   

7.
A rapid and efficient post-polymerization functionalization of poly(urea-co-urethane) (PUU) onto the graphene oxide (GO) nanosheets has been developed to produce super-acidic polymer/GO hybrid nanosheets. Thus, the surface of GO nanosheets were functionalized with 3-(triethoxysilyl)propyl isocyanate (TESPIC) from hydroxyl groups to yield isocyanate functionalized graphene oxide nanosheets. Then, sulfonated polymer/GO hybrid nanosheets were prepared by condensation polymerization of isocyanate-terminated pre-polyurea onto isocyanate functionalized graphene oxide nanosheets through the formation of carbamate bonds. FTIR and TGA results indicated that TESPIC modifier agent and poly(urea-co-urethane) were successfully grafted onto the GO nanosheets. The grafting efficiency of poly(urea-co-urethane) polymer onto the GO nanosheets was estimated from TGA thermograms to be 205.9%. Also, sulfonated polymer/GO hybrid nanosheets showed a proton conductivity as high as 3.7 mS cm?1. Modification and morphology of GO nanosheets before and after modification processes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).  相似文献   

8.
The hydrogen bonded polymer complex bulk and thin film was prepared by solution mixing and layer-by-layer assembly, respectively. Poly(vinylpyrrolidone) (PVPON) and poly(ethylene oxide) (PEO) were hydrogen bonding acceptor polymers while poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were hydrogen bonding donor polymers. The detachment of hydrogen bond between the chains in polymer complexes was investigated during the dissolution in alkaline solution, ionic liquid and tertiary amine N-oxide. We compared the dissolution process of the polymer complex bulk with the polymer complex thin film, and discussed the polymer chain length, chain entanglement degree and temperature effect on hydrogen bond detachment and dissolution of polymer complexes.  相似文献   

9.
In the current study, graphene oxide (GO) was prepared using green chemistry with modified Hummer's method without incorporating sodium nitrate (NaNO3). Solvent casting was employed to fabricate GO-doped poly(ethylene oxide) (PEO), that is, PEO/GO composites with various proportion of Na2SO4 and were then subjected to characterization via advanced spectroscopic techniques for different physicochemical aspects to estimate their potential applications as marketable products. XRD analysis explored that fabricated composites are more crystalline than neat PEO. PEO/GO/Na2SO4 composite films offered maximum crystallinity. SEM displayed the same trend. TG/DTA thermogram exposed better thermal stability than pristine polymer. FTIR studies confirmed complexation among hybrid's components. Elongation-at-break and Young's modulus displayed an enhancing behavior with an incremental loading of salt and filler. In terms of mechanical performance, composite of PEO with 0.37 wt % GO and 0.08 g salt was found to be an ideal composition during the course of study. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48376.  相似文献   

10.
A new strategy to compatibilize immiscible blends is proposed, using graphene oxide (GO) nanosheets taking advantage of their unique amphiphilic structures. When 0.5 or 1 wt% GOs were incorporated in immiscible nylon 6/poly(vinylidene fluoride) (PVDF) (90/10 wt%) blends, the dimension of PVDF dispersed particles was markedly reduced and became more uniform, revealing a well‐defined compatibilization effect of GOs on the immiscible blends. Correspondingly, the ductility of the compatibilized blends increased several times compared with uncompatibilized immiscible blends. In order to explore the underlying compatibilization mechanism, Fourier transform infrared and Raman spectra were applied to suggest that the edge polar groups of GOs can form hydrogen bonds with nylon 6 while the basal plane of GOs can interact with electron‐withdrawing fluorine on PVDF chains leading to the so‐called charge‐transfer C–F bonding. In this case, GOs exhibit favorable interactions with both nylon 6 and PVDF phase, therefore stabilizing the interface during GO migrations from PVDF/GO masterbatch to nylon 6 phase, which can minimize the interfacial tension and finally lead to compatibilization effects. Obviously, this work may open a broad prospect for GOs to be widely applied as a new compatibilizer in industrial fields. © 2012 Society of Chemical Industry  相似文献   

11.
In this study, two different monomers, namely hexafluorobutyl acrylate (HFBA) and diethylaminoethyl methacrylate (DEAEMA) were individually used to modify graphene oxide (GO) nanosheets via environmentally friendly plasma enhanced chemical vapor deposition (PECVD) method. The results from instrumental analyses confirmed the successful deposition of respective functional material onto the nanomaterials. Modified GOs were used as the nano-fillers to develop composite polyethersulfone (PES) ultrafiltration (UF) membrane with improved surface properties for oily solution treatment. All the developed membranes were characterized with a series of analytical instruments to support the findings of membrane filtration performance. The results indicated that the membrane incorporated with DEAEMA-GOs (coated with hydrophilic polymer) could achieve better results in terms of oil rejection, antifouling resistance and water recovery rate than the membrane incorporated with HFBA-GOs (coated with hydrophobic polymer). This is due to the reduced agglomeration between modified GOs as well as better interaction of hydrophilic-coated GOs with polymer membrane. Compared to the pure water flux of the membrane incorporated with unmodified GO, the membrane incorporated with DEAEMA-GO achieve approximately 85% higher value with oil removal rate remained almost unchanged (98.94% rejection).  相似文献   

12.
Jeffrey A Galloway 《Polymer》2004,45(2):423-428
The effect of sample size on the results of solvent extraction measurements for detecting cocontinuity in polymer blends was investigated. Poly(ethylene oxide)/polystyrene (PEO/PS) blend samples of several thicknesses were analyzed by removing the PEO phase using water extraction. The experimental degree of continuity was shown to have a linear dependence on the reciprocal of sample thickness. A model is proposed to explain this dependence and to allow the bulk or true degree of continuity to be determined. Measurement of the bulk degree of continuity is useful for understanding properties of cocontinuous polymer blends such as electrical conductivity, impact strength, or tensile strength.  相似文献   

13.
首先对石墨进行氧化处理制备氧化石墨(GO),然后对GO进行超声处理得到氧化石墨烯(GOs),并通过共混法制备了水性聚氨酯(WPU)/GOs复合材料。讨论了超声分散以及GOs加入量对WPU/GOs复合材料力学性能和热稳定性的影响。结果表明,经过超声分散的复合材料的力学性能比未超声分散的好;随着GOs含量的增加,复合材料的拉伸强度先增大后减小,断裂伸长率逐渐减小;加入质量分数0.50%的GOs,其WPU/GOs复合材料的热分解温度可提高44.7℃,明显提高WPU的热稳定性。  相似文献   

14.
The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li+ along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery.  相似文献   

15.
《Polymer》1987,28(7):1190-1199
The influence of different configurations of poly(methyl methacrylate) on the miscibility and superstructure of poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blends was examined using small-angle X-ray scattering and differential scanning calorimetry. The blends prepared by solution casting were isothermally crystallized at 48°C. The miscibility, the melting behaviour, the glass transition temperature and the structural parameters of the blends were strongly dependent on the tacticity and blend composition. The small-angle X-ray intensity profiles were analysed using a recently developed methodology. For the poly(ethylene oxide)/atactic poly(methyl methacrylate) (PEO/APMMA) and poly(ethylene oxide)/syndiotactic poly(methyl methacrylate) (PEO/SPMMA) blends, the long period and the amorphous and transition region thicknesses increased with increase of PMMA content, whereas for the poly(ethylene oxide)/isotactic poly(methyl methacrylate) (PEO/IPMMA) blends they are independent of composition. The structural properties of the blends were attributed to the presence of non-crystallizable material in the interlamellar or interfibrillar regions, depending on PMMA tacticity. From the glass transition and melting temperatures, it has been supposed that one homogeneous amorphous phase is present in the case of PEO/APMMA and PEO/SPMMA blends and that the PEO/IPMMA amorphous system is phase-separated. The free-volume contribution to the energy of mixing for the various tactic PMMAs is hypothesized to be responsible for the difference in mixing behaviour.  相似文献   

16.
The effect of adsorbed polymer on the stability of alumina suspension was investigated. Poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA) and similar kinds of polymer salts were used as a dispersant. The amount of polymer adsorbed on alumina surface and the suspension stability was measured. The pH, molecular weight, and concentration were considered as experimental parameters. PEO shows low affinity on the alumina surface while PAA has high affinity. In the case of PAA adsorption, the surface charge change by polymer adsorption influences suspension stability strongly, but not in the case of PEO adsorption. In simultaneous adsorption of PEO and PAA, the PAA concentration was fixed and PEO concentration was varied. The stability of suspension increased with increasing PEO concentration, and this is partly due to the steric stabilization by adsorption of PAA-PEO complex or adsorption of PEO through pre-adsorbed PAA and the depletion effect of non-adsorbed polymer. Suspension adsorbing sodium salts of PAA and poly(methacrylic acid) (PMA) each showed similar stability. But, when the PEO and these kinds of salts were added together to the suspension, the one with PAA sodium salt could keep a higher stability even with lower molecular weights of PEO compared with suspension with PMA sodium salt.  相似文献   

17.
以氧化石墨烯和金刚烷为原料,通过水相合成法制备了金刚烷胺功能化氧化石墨烯复合材料A/GO,以FT-IR、XRD和XPS对A/GO进行了结构表征,并考察了A/GO对有机染料的吸附性能。结果表明,与氧化石墨烯相比,A/GO对甲基蓝(AB93)表现出高效吸附性,其吸附动力学和吸附等温模型分别符合拟二级动力学和Langmuir模型,理论最大吸附容量(qm)为1250.0 mg/g。热力学分析表明,A/GO吸附AB93是自发的放热过程。A/GO吸附AB93对盐(NaCl和KCl)表现出良好的耐盐性,而CaCl2能有效地促进A/GO吸附AB93。对于刚果红和AB93等的混合染料体系,A/GO能选择性吸附AB93。  相似文献   

18.
The exfoliated graphene oxides (GOs) prepared via the Hummer’s method were well dispersed in water but re-stacked if drying to a powder form as observed by transmission electron microscope and x-ray diffraction pattern. Hence, they were directly mixed with poly(vinyl alchohol) (PVA) in water to fabricate the PVA/GO nanocomposite films by casting the resulting aqueous solutions and drying. As the nanocomposite films with no less than 5 wt% GO content were subjected to combustion, the char residue could preserve their original film profile acting like an inflammable scaffold. The glassy transition temperature of as-fabricated PVA/GO nanocomposite films barely changed with the content of GO but significantly decreased from ~70 to ~10 °C as environmental relative humidity (RH) was increased from 20 to 80 % due to more moisture adsorption. Therefore, the mechanical behavior of PVA/GO nanocomposite films not only depended on the GO content but also RH, exhibiting from rubbery to glassy status.  相似文献   

19.
A non-fouling (protein resistant) polymer surface was achieved using an argon glow discharge treatment of a polyethylene surface which had been precoated with various poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) (PEO-PPO-PEO) tri-block copolymer surfactants. The surfactant is first deposited on the polymer surface via a solvent swelling and evaporation method. Then the coated surfactant is immobilized on the substrate surface by an inert gas discharge treatment. ESCA and water contact angle () measurements on treated and solvent washed surfaces show significant increases in both surface O/C ratios and surface water wettability (0 < 30°) compared to LDPE control surfaces, revealing the presence of PEO on the treated surfaces. A great reduction of fibrinogen adsorption on the modified surfaces is also observed for the highest PEO content surfactants. This simple surface modification process may have wide applicability to obtain wettable polymer surfaces in general, and non-fouling biomaterial surfaces in specific.  相似文献   

20.
Inverse gas chromatography (i.g.c.) of columns prepared with a polymer blend of poly(ethylene oxide) (PEO) and polystyrene (PS) in the presence of pulverized porous inorganic materials has been studied. Information on the inorganics-polymer interaction was obtained from the change in the Z-shaped curve observed in the retention diagram. Inorganic materials except active carbon selectively incorporated PEO into their pores. The incorporation ability increased with increasing surface area of inorganic material. Molecular sieve 5A was scarcely able to incorporate PEO into its pores in spite of its large surface area, and this was ascribed to its small pore diameter. Active carbon selectively incorporated PS into its pores. Irreversible adsorption of a solute on active carbon was a dominant process in i.g.c. measurement for the column prepared with polymer and active carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号