首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wei Lin  Jintang Shang  Wentian Gu  C.P. Wong 《Carbon》2012,50(4):1591-1603
The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films synthesized by thermal chemical vapor deposition was measured by a laser flash technique, and shown to be ~30 mm2 s?1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT films and the individual CNTs were ~27 and ~540 W m?1 K?1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube–tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing density was beneficial in increasing the collective thermal conductivity of the VACNT film; however, the increased tube–tube interaction in dense VACNT films decreased the effective thermal conductivity of the individual CNTs in the films. The tip-to-tip contact resistance was shown to be ~1 × 10?7 m2 K W?1. The study will shed light on the potential application of VACNTs as thermal interface materials in microelectronic packaging.  相似文献   

2.
The mechanical compliance of vertically aligned carbon nanotube (VACNT) films renders them promising as interface materials that can accommodate thermal expansion mismatch. Here we study the relationship between the detailed morphology and elastic modulus of multi-walled VACNT films with thicknesses ranging from 98 to 1300 μm. A systematic analysis of scanning electron micrographs reveals variations in nanotube alignment and density among samples and within different regions of a given film. Nanoindentation of both top and bottom film surfaces using an atomic force microscope with spherical indenters with radii between 15 and 25 μm provides evidence of the modulus differences. The top surface is shown to have a higher modulus than the base, with out-of-plane modulus values of 1.0–2.8 MPa (top) and 0.2–1.4 MPa (base). The indentation data and microstructural information obtained from electron microscopy are interpreted together using an open cell foam model to account for differences in nanotube alignment and density, which are generally lower at the base and yield predictions that are consistent with the modulus data trends. This work shows that microstructure analysis complements property measurements to improve our understanding of nanostructured materials.  相似文献   

3.
4.
We present a scalable approach for the fabrication of large-area arrays of carbon nanotube (CNT) structures using focused laser beams in the 0.05–10 W range. We show that CNT films can easily be micromachined into arrays of columns using a wide variety of commercially available pulsed lasers – Excimer, diode-pumped solid-state (DPSS), and CO2 – operating at wavelengths from 248 nm to 9300 nm. We demonstrate that vertically aligned carbon nanotube (VACNT) arrays with pitches from 20 to 500 μm can be produced with aspect ratios greater than 20:1. Machining speeds up to 425 mm/s were demonstrated and trenches were produced from 10 to 200 μm wide depending on the laser method and beam size. The CO2 laser had the largest beam diameter of 175 μm and produced the widest columns with the most taper. The remaining lasers, having beam diameters between 10 and 100 μm, produced smaller columns and finer pitch arrays. The VACNT arrays were shown to have high surface quality with no observable residue left behind, demonstrating focused laser micromachining as a readily available soft tooling means for direct manufacturing of VACNT devices. Laser micromachining methods are compared to evaluate the tradeoffs between quality and manufacturing costs.  相似文献   

5.
Millimeter-to-centimeter scale vertically aligned carbon nanotube (VACNT) arrays are widely studied because of their immense potential in a range of applications. Catalyst control during chemical vapor deposition (CVD) is key to maintain the sustained growth of VACNT arrays. Herein, we achieved ultrafast growth of VACNT arrays using Fe/Al2O3 catalysts by ethanol-assisted two-zone CVD. One zone was set at temperatures above 850 °C to pyrolyze the carbon source and the other zone was set at 760 °C for VACNT deposition. By tuning synthesis parameters, up to 7 mm long VACNT arrays could be grown within 45 min, with a maximal growth rate of ∼280 μm/min. Our study indicates that the introduction of alcohol vapor and separation of growth zones from the carbon decomposition zone help reduce catalyst particle deactivation and accelerate the carbon source pyrolysis, leading to the promotion of VACNT array growth. We also observed that the catalyst film thickness did not significantly affect the CNT growth rate and microstructures under the conditions of our study. Additionally, the ultralong CNTs showed better processability with less structural deformation when exposed to solvent and polymer solutions. Our results demonstrate significant progress towards commercial production and application of VACNT arrays.  相似文献   

6.
Electrochemically active diamond-like carbon (DLC) electrodes featuring high specific surface area have been prepared by plasma-enhanced chemical vapour deposition (CVD) onto densely packed forests of vertically aligned multiwall carbon nanotubes (VACNTs). The DLC:VACNT composite film exhibits a complex topography with web like features and ridges generated by partial coalescence of the DLC over the CNT arrays. DLC:VACNT electrodes exhibit low background responses over a large potential window, low uncompensated resistance, as well as low charge-transfer impedance in the presence of ferrocyanide as a redox probe. The interfacial capacitance associated with the DLC:VACNT electrode is in the range of 0.6 mF cm−2, a value two orders of magnitude larger than in conventional flat carbon electrodes. DLC films grown onto single-crystal Si(1 0 0) under identical conditions resulted in essentially insulating layers. Conducting-atomic force microscopy studies reveal that the film electro-activity does not arise from specific topographic features in the highly corrugated film. The ensemble of experimental results suggests that the enhanced electrochemical responses are not connected to areas in which the CNT support is exposed to the electrolyte solution. This is remarkable behaviour considering that no dopants have been included during the DLC film growth.  相似文献   

7.
We report a binder-free Li-ion battery anode based on a tin (Sn) coated vertical-aligned carbon nanotube (VACNT) array. In this anode, the VACNT array, acting as a robust core matrix to support high theoretical capacity active material Sn, offers large inter-wire spacing for Sn expansion during the lithiation/de-lithiation processes and forms direct conductive pathways for electrons transporting. A remarkable enhancement in the capacity retentions abilities of this anode compared with pure Sn film anode has been achieved. A reversible capacity as high as 900 mAh g−1 over 400 cycles at 0.2 C and nearly 400 mAh g−1 over 1000 cycles at 0.5 C has been demonstrated respectively.  相似文献   

8.
We present a new method for synthesis of thick, self-standing porous carbon electrodes with improved physicochemical properties and unique porous structure. The synthesis is based on the use of vertically aligned carbon nanotubes (VACNT) as templates for polymer-based activated carbon materials. The VACNT template enables the production of 1 mm thick, binder-free electrodes with high capacity values even at high rates (>160 Fg−1 at more than 1 Ag−1 for 1 mm thick electrode), and very good stability upon cycling. The electrochemical performance after more than 50,000 cycles, the pore characterization by adsorption isotherms, and the structural analysis of the composite electrode are also reported.  相似文献   

9.
Superconductivity was achieved above 10 K in heavily boron-doped diamond thin films deposited by the microwave plasma-assisted chemical vapor deposition (CVD) method. Advantages of the CVD method are the controllability of boron concentration in a wide range, and a high boron concentration, compared to those obtained using the high-pressure high-temperature method. The superconducting transition temperatures of homoepitaxial (111) films are determined to be 11.4 K for TC onset and 8.4 K for zero resistance from transport measurements. In contrast, the superconducting transition temperatures of (100) films TC onset = 6.3 K and TC zero = 3.2 K were significantly suppressed.  相似文献   

10.
Barium dititanate (BaTi2O5) thick films were prepared on a Pt-coated Si substrate by laser chemical vapor deposition, and ac electric responses of (0 2 0)-oriented BaTi2O5 films were investigated using several equivalent electric circuit models. BaTi2O5 films in a single phase were obtained at a Ti/Ba molar ratio (mTi/Ba) of 1.72–1.74 and deposition temperature (Tdep) of 908–1065 K as well as mTi/Ba = 1.95 and Tdep = 914–953 K. (0 2 0)-oriented BaTi2O5 films were obtained at mTi/Ba = 1.72–1.74 and Tdep = 989–1051 K. BaTi2O5 films had columnar grains, and the deposition rate reached 93 μm h?1. The maximum relative permittivity of the (0 2 0)-oriented BaTi2O5 film prepared at Tdep = 989 K was 653 at 759 K. The model of an equivalent circuit involving a parallel combination of a resistor, a capacitor, and a constant phase element well fitted the frequency dependence of the interrelated ac electrical responses of the impedance, electric modulus, and admittance of (0 2 0)-oriented BaTi2O5 films.  相似文献   

11.
The 0.6[0.94Pb(Zn1/3Nb2/3)O3 + 0.06BaTiO3] + 0.4[0.48(PbZrO3) + 0.52(PbTiO3)], PBZNZT, thin films were synthesized by pulsed laser deposition (PLD) process. The PBZNZT films possess higher insulating characteristics than the PZT (or PLZT) series materials due to the suppressed formation of defects, therefore, thin-film forms of these materials are expected to exhibit superior ferroelectric properties as compared with the PZT (or PLZT)-series thin films. Moreover, the Ba(Mg1/3Ta2/3)O3 thin film of perovskite structure was used as buffer layer to reduce the substrate temperature necessary for growing the perovskite phase PBZNZT thin films. The PBZNZT thin films of good ferroelectric and dielectric properties (remanent polarization Pr = 26.0 μC/cm2, coercive field Ec = 399 kV/cm, dielectric constant K = 737) were achieved by PLD at 400 °C. Such a low substrate temperature technique makes this process compatible with silicon device process. Moreover, thus obtained PBZNZT thin films also possess good optical properties (about 75% transmittance at 800 nm). These results imply that PBZNZT thin films have potential in photonic device applications.  相似文献   

12.
A new series of natural lacquer/polyurethane (LPU) blended films were synthesized. The new lacquer/polyurethane films have very good visual color and detected gloss, fast drying time, strong weather resistance, especially against UV light and water, and a better pencil lead hardness (8H). The gel ratio increases with drying time and becomes stable after 6 months (more than 99%). The surface glass transition temperature (Tgs) obtained from a rigid-body pendulum physical properties testing (RPT) instrument showed that the new LPU films dried for 6 months have higher Tgs than polyurethane (PU) films in the following order: LPU 100 > LPU 90 > LPU 80 > LPU 70 > LPU 60 > LPU 50 > PU. Differential scanning calorimeter (DSC) results showed the same tendency as Tg but without a great gap in the LPU series except for polyurethane. Thermogravimetric analysis (TGA) showed that when the ratio of natural lacquer is more than 50%, the 50% weight loss temperatures increase about 100 °C. In addition, the reaction between lacquer and polyurethane is discussed based on the IR and NMR measurements.  相似文献   

13.
Hybrid films of polyaniline (PANI) and manganese oxide (MnOx) were obtained through potentiodynamic deposition from solutions of aniline and MnSO4 at pH 5.6. The hybrid films demonstrated characteristic redox behaviors of PANI in acidic aqueous solution. Characterization of the hybrid films by XRD indicated the amorphous nature of MnOx in the films in which manganese existed in oxidation states of +2, +3 and +4, based on XPS measurement. Hybrid film of PANI and MnOx, PM120 obtained from the solution of 0.1 M aniline and 120 mM Mn2+ displayed a well opened nanofibrous structure which showed an 44% increase in specific capacitance from that of PANI (408 F g?1) to 588 F g?1, measured at 1.0 mA cm?2 in 1 M NaNO3 (pH 1). The hybrid film kept more than 90% of its capacitance after 1000 charging-discharging cycles, with a coulombic efficiency of 98%. The specific capacitance of a symmetric capacitor using PM120 as the electrodes is 112 F g?1.  相似文献   

14.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) films with different thicknesses were prepared by polyvinylpyrrolidone (PVP)-modified chemical solution deposition (CSD) method. The KNN films with thickness up to 4.9 μm were obtained by repeating deposition-heating process. All KNN thick films exhibit single perovskite phase and stronger (1 1 0) peak when annealed at 650 °C. The variation of dielectric constant with thickness indicates that there exists a critical thickness for the dielectric constant in the KNN films which should lie in 1.3–2.5 μm. The similar trend is observed for the ferroelectric and piezoelectric properties of KNN films. Both the remnant polarization Pr and the piezoelectric coefficient d33 of KNN thick films increase with the film thickness and become saturated after the critical thickness.  相似文献   

15.
The ns-laser ablation characteristics of tetragonal 3YSZ versus cubic 8YSZ have been investigated to minimize a transfer of particulates in the pulsed laser deposition process. 3YSZ is significantly less prone to the exfoliation of μm-sized fragments than 8YSZ due to its enhanced fracture toughness, which allows the deposition of particulate-free films in a fluence range of 1.2–1.5 J/cm2. The influence of the PLD process parameters on the film microstructure and stoichiometry have been investigated with respect to the growth of dense 3YSZ layers with adequate adhesion to the c-cut sapphire single crystals. Dense 3YSZ films are obtained below a threshold pressure of ~0.025 mbar. At 600 °C polycrystalline layers with a preferential (1 0 1) and (0 0 1) orientation and a columnar microstructure are formed while deposition at room temperature yields uniform amorphous layers. Strongly oxygen deficient films of the metastable t′′ phase are obtained at a low background pressure of 10?3 mbar. The meta phase films exhibit a low activation energy of 0.77 ± 0.02 eV and an enhanced d.c. electrical conductivity, e.g. 9 × 10?5 S/cm at 400 °C, comparable or even higher than for 8YSZ films and bulk at temperatures up to 500 °C.  相似文献   

16.
《Ceramics International》2016,42(5):5778-5784
Bi2Sr2Ca1Cu2O8+∂ thin films were deposited on MgO (100) substrates by pulsed laser deposition (PLD). The effects of post-annealing time on the phase formation, the structural and superconducting properties of the films have been investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature dependent resistivity (R–T), atomic force microscopy (AFM), and DC magnetization measurements. The films deposited at 600 °C were post-annealed in an atmosphere of a gas mixture of Ar (93%) and O2 (7%), at 860 °C for 10, 30, and 60 min. All films have demonstrated a mainly single phase of 2212 with a high crystallinity (FWHM≈0.159°) and c-axis oriented. The critical temperature, TC, of the films annealed for 10, 30, and 60 min were obtained as 77, 78, and 78 K, respectively. The highest critical current density, JC, was calculated as 3.34×107 A/cm2 for the film annealed at 860 °C for 30 min at 10 K.  相似文献   

17.
(K,Na)NbO3 ferroelectric films were grown on LaNiO3 coated silicon substrates by RF magnetron sputtering. The conductive LaNiO3 films acted as seed layers and induced the highly (001) oriented perovskite (K,Na)NbO3 films. Such films exhibit saturated hysteresis loops and have a remnant polarization (2Pr) of 23 μC/cm2, and coercive field (2Ec) of 139 kV/cm. The films showed a fatigue-free behavior up to 109 switching cycles. A high tunability of 65.7% (@300 kV/cm) was obtained in the films. The leakage current density of the films is about 6.0×10?8 A/cm2 at an electric field of 50 kV/cm.  相似文献   

18.
Nanocrystalline diamond (NCD) films were deposited on Si substrates by microwave plasma-enhanced chemical vapor deposition (MPECVD) using methane/hydrogen/oxygen (30/169/0.2 sccm) as process gases. Subsequently a thin (0.33 μm) and a thick (1.01 μm) NCD films were irradiated with XeF excimer laser (λ = 351 nm) with 300 and 600 mJ cm? 2 of energy densities in air. The NCD films became rougher after laser irradiations. Fraction of graphitic clusters decreased but oxygen content increased in the thin NCD film after laser irradiation. Opposite phenomena were observed for the thick NCD films. Effect of laser irradiation to oxygenation and graphitization of NCD films was correlated with structural properties of free surface and grain boundaries of the thin and thick NCD films.  相似文献   

19.
《Polymer》2007,48(1):363-370
Ultra-high molecular weight isotactic poly(1-butene) (UHMW-PB1) melt-grown crystal (MGC) films were drawn using the PIN drawing technique. Although the UHMW-PB1 MGC films had poor ductility in the crystalline state, they were ultradrawable in the molten state above the static melting temperature (Tm). The drawability of the MGC films was strongly influenced by the draw temperature, the sample thickness, and the contact time between the metal heater and sample, and it increased with decreasing sample thickness. The maximum draw ratio (DRmax) was nearly constant when the sample thickness was less than 100 μm at a given draw temperature. The contact time between the metal heater and sample needed to draw continuously in the molten state was at least 0.1 s. The ductility increased rapidly above 130 °C, reaching a maximum at 200 °C, and decreased at higher temperatures. A DRmax of 170 was achieved at 200 °C under optimum conditions. The efficiency of the drawing, based on the Herman crystalline orientation function (fc) and tensile properties versus DR, was lower for films drawn at higher temperatures. The highest fc of 0.996, tensile modulus of 14 GPa, and strength of 900 MPa were obtained by ultradrawing with DR = 50 at 155 °C. This modulus corresponded to 58% of the X-ray crystal modulus (24 GPa), whereas the modulus of PB1 films drawn in the crystalline state corresponded to only 12–13% (3 GPa) of the theoretical crystal modulus.  相似文献   

20.
《Ceramics International》2016,42(3):4171-4175
Boron nitride (BN) films are prepared by dual-ion beam sputtering deposition at room temperature (~25 °C). An assisting argon/nitrogen ion beam (ion energy Ei=0–300 eV) directly bombards the substrate surface to modify the properties of the BN films. The effects of assisting ion beam energy on the characteristics of BN films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectra, atomic force microscopy, and optical transmittance. The density of the B–N bond in the film increased with the increase in assisting ion beam energy. The highest transmittance of more than 95% in the visible region was obtained under the assisting ion beam energy of 300 eV. The band gap of BN films increased from 5.54 eV to 6.13 eV when the assisted ion-beam energy increased from 0 eV to 300 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号