首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2016,42(10):11603-11610
The work presents results on the manufacture and comparative assessment of the structure and microstructure parameters of polyacrylonitrile polymer (PAN)-based carbon nano- and micro-fibers. Using the same polymer solution, PAN nano- and microfibers were obtained. The PAN nanofibers were obtained by electrospinning, and microfibers were spun using the conventional solution-spinning method. The PAN-based fiber precursors were annealed to 1000 °C, 2000 °C and to 2800 °C. Using X-ray diffraction and Raman spectroscopy, the structural and microstructural parameters of both types of carbon fibers were examined. The morphology of PAN nanofibers and carbon nanofibers (CNF) were studied by SEM. Both types of ex-PAN carbon fibers (nano and micro) have similar the c-axis spacing (d002) values and crystallite sizes after heat treatment to 2000 °C presenting turbostratic structure. HR-TEM images of low temperature CNF show uniform microstructure with the misoriented small carbon crystallites along the fiber axis. The ratio of the integrated intensities of the D and G peaks for carbon nanofibers after heat treatment at 2000 °C was distinctly higher in comparison to carbon microfibers (CF). After additional annealing the fibers to 2800 °C a better structural ordering show CNF. The crystallite sizes (Lc, La) in CNF were distinctly higher in comparison to the crystallites in CF. CF consist of two carbon components, whereas CNF contain three carbon components varying in structural and microstructural parameters. One of carbon phases in CNF was found to have the interlayer spacing close to graphite, i.e. d002=0.335 nm.  相似文献   

2.
Ordered polyacrylonitrile (PAN) interphase structures were formed in solution-cast PAN/carbon nanotube (CNT) composite films by enhancing polymer crystallization conditions and processing parameters for five types of CNTs. All film samples were heat-treated using similar stabilization and carbonization (up to 1100 °C) processes. Both the precursor and carbonized materials were characterized by electron microscopy and X-ray spectroscopy. Highly ordered graphitic structure was formed predominantly in the carbonized materials at 1100 °C (i.e., ∼1500 °C lower than the temperature used in a commercial graphitization process). The ordering of the graphite structure formed at 1100 °C was further improved by heat treatment up to 2100 °C. Multiple characterization results indicate that the early onset of PAN conversion to graphite is directly related to the polymer interphase formation as well as the CNT type. Based on the stabilization and carbonization parameters used in this study, PAN/single-wall carbon nanotube (SWNT) samples showed more prevalent graphite formation at 1100 °C. This work demonstrates the influence of CNT type regarding interfacial confinement toward this low-temperature polymer-to-graphite conversion process.  相似文献   

3.
Ribbon-shaped carbon fibers have been prepared from mesophase pitch by melt-spinning, oxidative stabilization and further heat treatment. The internal graphitic layers of ribbon-shaped carbon fibers graphitized at 2800 °C show a highly preferred orientation along the longitudinal direction. Parallel stretched and unidirectional arranged ribbon-shaped carbon fibers treated at about 450 °C were sprayed with a mesophase pitch powder grout, and then hot-pressed at 500 °C and subsequently carbonized and graphitized at various temperatures to produce one-dimensional carbon/carbon (C/C) composite blocks. The shape and microstructural orientation of ribbon fibers have been maintained in the process of hot-pressing and subsequent heat treatments and the main planes of the ribbon fibers are orderly accumulated along the hot-pressing direction. Microstructural analyses indicate that the C/C composite blocks have a typical structural anisotropy derived from the unidirectional arrangement of the highly oriented wide ribbon-shaped fibers in the composite block. The thermal conductivities of the C/C composites along the longitudinal direction of ribbon fibers increase with heat-treatment temperatures. The longitudinal thermal conductivity and thermal diffusivity at room temperature of the C/C composite blocks graphitized at 3100 °C are 896 W/m K and 642 mm2/s, respectively.  相似文献   

4.
The structure of a new carbon–carbon nanocomposite that consists of thin (<15 layers) multi-layer graphene microsheets and carbon nanoflowers (CNF) was examined by high-resolution transmission electron microscopy combined with selected area electron diffraction (SAED) analysis, and Raman spectroscopy. Both SAED and Raman analyses verified that graphene layers in the sheets were rotated to each other. A typical rotation angle in SAED analysis was 30 ± 2° but also other rotation angles (e.g., 2 ± 1°, 12 ± 2°, 19 ± 2° and 25 ± 2°) were detected. Raman analysis designated the rotation angle of 11–12° which may indicate that this is the predominant rotation angle in the composite. Both folded and free standing, unfolded edges were present in the sheets. The free standing edges were rough and no preferred chirality was found. Overlapping boundary interfaces were dominant between the graphene domains in the sheets. These features may degrade the electronic properties of the composite from the ideal values. However, the interlayer distance in the sheets was increased ∼12% compared to graphite. This, together with the wrinkled network of the sheets and the CNFs that contain nanosize (∼5–10 nm) cavities, may increase, e.g., lithium-ion insertion capacity of the composite.  相似文献   

5.
A highly-oriented continuous carbon/graphite tape was prepared from a coal tar-based mesophase pitch by melt-blowing using a slit type nozzle. The average thickness and width of tape were ca. 20 μm and 7.2 mm, respectively. The molten precursor pitch was continuously extruded through the slit nozzle to produce a pitch tape along the drawing direction. The tape was oxidized, carbonized and graphitized. The micro area X-ray diffraction revealed that the carbon layer planes were oriented parallel to the tape surface indicating a strong anisotropy. The orientation was greater in the tape drawing direction than in the tape width direction, and also in the center area than in the edge area. The mechanical properties were higher than those of conducting polymers, but lower than those of carbon fiber with lower elastic modulus grade.  相似文献   

6.
Using a naphthalene-derived mesophase pitch as a starting material, highly oriented ribbon-shaped carbon fibers with a smooth and flat surface were prepared by melt-spinning, oxidative stabilization, carbonization, and graphitization. The preferred orientation, morphology, and microstructure, as well as physical properties, of the ribbon-shaped carbon fibers were characterized. The results show that, the ribbon-shaped fibers possessed uniform shrinkage upon heat treatment, thereby avoiding shrinkage cracking commonly observed in round-shaped fibers. As heat treatment progressed, the ribbon-shaped graphite fibers displayed larger crystallite sizes and higher orientation of graphene layers along the main surface of the ribbon-shaped fiber in comparison with corresponding round-shaped fibers. The stability of the ribbon-shaped graphite fibers towards thermal oxidation was significantly higher than that of K-1100 graphite fibers. The longitudinal thermal conductivity of the ribbon fibers increased, and electrical resistivity decreased, with increasing the heat treatment temperatures. The longitudinal electrical resistivity and the calculated thermal conductivity of the ribbon-shaped fibers graphitized at 3000 °C are about 1.1 μΩ m and above 1100 W/m K at room temperature, respectively. The tensile strength and Young’s modulus of these fibers approach 2.53 and 842 GPa, respectively.  相似文献   

7.
In this study, we report an efficient method for synthesis of well-graphitized hollow carbon nano-onions (CNOs). CNOs were firstly fabricated by chemical vapor deposition (CVD) method at 850 °C using an Fe–Ni alloy catalyst with diameters of 10–15 nm. Then hollow CNOs were obtained by annealing as-prepared CNOs at 1100 °C for 3 h. It is found that during the CVD growth, the presence of nickel retards the deactivation of Fe–Ni–C austenite, providing the possibility for the growth of up to two hollow CNOs from each alloy particle. The subsequent high-temperature annealing led to the escaping of the Fe–Ni alloy from the graphitic layers, and the re-catalysis of precipitation and graphitization of the carbon atoms previously dissolved in the alloy particle (Fe0.64Ni0.36) to form hollow CNOs. The hollow CNOs exhibit good performance as materials for electrochemical hydrogen storage, with a discharge capacity of 481.6 mAh/g under a current density of 500 mA/g, corresponding to a hydrogen storage capacity of 1.76 wt.%. Our results demonstrate that the hollow CNOs are promising materials as a storage medium for hydrogen as a fuel source.  相似文献   

8.
This work aims to establish a colloidal route to obtain laminates of alumina–zirconia combining layers with and without graphene. Green tapes of alumina, alumina with 5 vol.% of 3Y-TZP and alumina with 5 vol.% of 3Y-TZP and graphene-oxide (2 vol.%) were obtained by aqueous tape casting. It is possible to design materials for different structural applications with a controlled microstructure with a high number of different layers. The tapes were punched into 20-mm discs, joined to form laminates alternating up to 18-layers, and sintered in one-step by spark plasma sintering (SPS) at 1400 °C. It has demonstrated that there is a significant graphite diffusion provoked by the required graphite holders into the SPS-furnace. Dense laminates with layer thicknesses ∼100 μm and good cohesion between layers were obtained. Nanoindentation results showed that hardness and elastic modulus values were higher than 27 GPa and 300 GPa, respectively, and similar for all layers.  相似文献   

9.
A solution-based, large-area coating procedure is developed to produce conductive polymer composite films consisting of hollow-core carbon nanofibers (CNFs) and a fluoroacrylic co-polymer available as a water-based dispersion. CNFs (100 nm dia., length ~130 μm) were dispersed by sonication in a formic acid/acetone co-solvent system, which enabled colloidal stability and direct blending of the CNFs and aqueous fluoroacrylic dispersions in the absence of surfactants. The dispersions were sprayed on smooth and microtextured surfaces, thus forming conformal coatings after drying. Nanostructured composite films of different degrees of oil and water repellency were fabricated by varying the concentration of CNFs. The effect of substrate texture and CNF content on oil/water repellency was studied. Water and oil static contact angles (CAs) ranged from 98° to 164° and from 61° to 164°, respectively. Some coatings with the highest water/oil CAs displayed self-cleaning behavior (droplet roll-off angles <10°). Inherent conductivity of the composite films ranged from 63 to 940 S/m at CNF concentrations from 10 to 60 wt.%, respectively. Replacement of the long CNFs with shorter solid-core carbon nanowhiskers (150 nm dia., length 6–8 μm) produced stable fluoropolymer–nanowhisker dispersions, which were ink-jetted to generate hydrophobic, conductive, printed line patterns with a feature size ~100 μm.  相似文献   

10.
This paper reports for the first time the elastomeric behavior of a non-polymeric material, as observed in exfoliated graphite compacts (⩽12 vol.% solid, preferably 4 vol.% solid) and enabled by the high-amplitude reversible and easy sliding of the graphite layers within the cell wall of exfoliated graphite. The reversibility is probably due to the cellular structure of exfoliated graphite. The elastomeric character is independent of the maximum load and essentially unchanged upon reloading. The total and reversible engineering shear strains of the cell wall (∼60 graphite layers, ∼20 nm thick) are up to 40 and 35 respectively during instrumented indentation (in the compaction direction) without fracture of the layers, compared to corresponding values of 12 and 8 for flexible graphite (38 vol.% solid). The fraction of displacement that is irreversible is as low as 12%, compared to 29% for flexible graphite. The modulus is as low as 83 kPa, compared to 790 kPa for flexible graphite. The greater the degree of compaction, the lower are the shear strain and reversibility, and the higher are the modulus and the displacement load. The ease of interlayer sliding is inadequate in flexible graphite or highly-oriented pyrolytic graphite (prior work) for substantial elastomeric behavior.  相似文献   

11.
The effects of nanofiller with elongated structure on the dissolution and diffusion behaviors of CO2 in polypropylene (PP)/carbon nanofiber (CNF) composites were investigated in this work. The solubility of CO2 in PP and PP composites containing 5 wt% and 10 wt% CNF was measured by using magnetic suspension balance (MSB) combined with the experimental swelling correction by using a self-designed high-temperature and -pressure view cell at the temperatures of 200 and 220 °C and pressures up to 20 MPa. The diffusion coefficient of CO2 in PP and PP composites was also determined from the sorption line at CO2 pressures ranging from 5 to 10 MPa. It was found that the solubility and diffusivity of CO2 in PP/CNF composites increased with increasing the filler content, which should be mainly attributed to the change of the distribution of free volume in the polymer matrix besides the small amount of adsorption capacity of CO2 in CNF. A modified Henry model incorporated with Langmuir adsorption factor was proposed to correlate the solubility of CO2 in the PP/CNF composites with an average relative deviation less than 3%. A new model based on free volume theory incorporated with the diffusion driving force factor was established to correlate the experimental diffusion coefficient of CO2 in the PP/CNF composites within an average relative deviation of 2%.  相似文献   

12.
A method for preparing flat porous carbonized films (FPCFs) by carbonizing paper-thin wood shavings was developed, and their structures and properties were investigated. The FPCFs were binder-free and had horizontal honeycomb structures consisting of macropores of 2–50 μm arising from tracheids and pittings. The FPCFs with approximate dimensions of 120 mm × 104 mm × 113 μm showed some flexibility. They were effectively reinforced and became twistable by introducing styrene–butadiene rubber (SBR) into the macropores via impregnation. The SBR-modified FPCFs carbonized at 1023 K retained electrical conductivity on the order of 103 S/m with the inclusion of SBR concentrations up to 15 mg/cm2. The electrical conductivity of FPCFs carbonized at 773 K changed from nonconductive to 102 S/m by impregnating the macropores with electrically conductive carbon paste or to 105 S/m with Cu chemical plating. The FPCFs became responsive to a magnetic field by impregnating the macropores with a magnetic fluid or by creating ferrites through chemical reactions within the macropores.  相似文献   

13.
This study investigates strain dependent energy dissipation characteristics in carbon nanofiber (CNF) reinforced carbon fiber epoxy composites (multi-scale composites) by characterizing their viscoelastic properties and vibrational damping response. The air damping effect on the energy dissipation characteristics is also examined. The viscoelastic properties of epoxy containing two weight fractions (3 and 5 wt%) of added CNFs were characterized using dynamic mechanical analysis. Carbon fiber layers were then infiltrated with the two epoxy resins containing the CNFs to form multi-scale composites. A strain dependent loss factor behavior of the multi-scale composites was observed in the dynamic cyclic testing due to CNF’s stick–slip friction, showing a 53% increase in loss factor for the composites containing 5 wt% CNFs. The beam vibration test results also indicated an improvement in loss factor for the multi-scale composite beams relative to those without the CNF addition in the first two resonant frequencies. The multi-scale composite beams exhibit an increase in loss factor, up to 43%, at high amplitude excitation, while a reduction in loss factor was seen at low amplitude. These observed strain dependent damping characteristics seem to result from both the stick–slip friction and the air damping effect.  相似文献   

14.
Temperature and alkaline hydroxide treatment effects on the surface area and pore structure of the cathode deposit multi-walled carbon nanotube (MWCNT)–graphite mixture were investigated in a temperature range of 600–800 °C. Hydrogen sorption properties of the MWCNT–graphite mixture samples were studied by varying the alkaline hydroxide-activation temperature. Pore characterization of modified MWCNT–graphite mixture was performed with the observation of adsorption–desorption isotherms of N2 at 77 K. Hydrogen sorption of the non-treated and treated MWCNT–graphite mixture was carried out using a volumetric apparatus at 77 K. The highest surface area of the sample was obtained as 275 m2 g?1 by treatments with KOH at 600 °C. The increase in the specific surface area of MWCNT–graphite sample mixture was about 13 times. The maximum amount of hydrogen adsorbed on the MWCNT–graphite sample mixture was found as 0.75 and 0.54 wt.% by chemical treatments with KOH at 600 °C and NaOH at 700 °C, respectively whereas it was 0.01 wt.% for the original sample. The hydrogen sorption capacity was enhanced considerably by KOH treatments at 600 °C.  相似文献   

15.
Dawei Li  Lujun Pan  Yongkuan Wu  Wei Peng 《Carbon》2012,50(7):2571-2580
Carbon nanocoils (CNCs) with controlled shape, coil diameter and coil pitch have been synthesized in a chemical vapor deposition (CVD) system by changing the reaction temperature and acetylene flow rate. It is found that three-dimensional CNCs are produced at a lower temperature (700–770 °C), while a higher temperature (810 °C) leads to the growth of straight carbon nanofibers (CNFs). CNC–CNF hybrid structures are produced by increasing growth temperature from 750 to 810 °C during a single synthesis run, while CNF–CNC hybrid structures are produced by decreasing the temperature from 810 to 750 °C. Similarly, by changing growth temperature from 750 to 810 °C and then back to 750 °C during a single run, CNC–CNF–CNC complex hybrid structures can be obtained. During the CVD process, the pulsing of acetylene and the changing of acetylene flow rate are also found to be effective in controlling the structure of CNCs. CNCs with periodic helical structures can be produced by interrupting the acetylene flow or changing its flow rate periodically. It is found that the higher the flow rate of acetylene, the smaller the coil pitch and diameter of the grown CNCs.  相似文献   

16.
Graphitized carbide-derived-carbon (CDC) with hierarchical micro- and meso-pores is synthesized by chlorination of titanium carbide powder at 1000 °C. The produced CDC has many bilayer graphenes and some narrow graphite ribbons, which contributes a large amount of micropores (∼1.35 nm) and some mesopores. Although hierarchical pore is an attractive structure for supercapacitor, the low hydrophilicity of the graphitized CDC leads to poor electrochemical performance in alkaline electrolyte. The specific capacitance of the CDC in KOH aqueous electrolyte is only 5 F g−1. A strategy that adding ethanol to alkaline electrolyte is presented to improve its surface wettability. The specific capacitance of the graphitized CDC in KOH aqueous electrolyte with addition of ethanol increases to 60 F g−1 at a scan rate of 20 mV s−1. The optimal content of ethanol in KOH electrolyte is 10 wt.%. In addition, cyclic voltammogram curve can maintain a quasi-rectangular shape well even at a scan rate of 500 mV s−1 and the retention rate of the specific capacitance is about 70%. The specific capacitance is stable at high current density (e.g. 1 A g−1), and almost no performance degradation is observed after 8000 consecutive cycles.  相似文献   

17.
Time-resolved studies uncovered kinetics and mechanism of Mg–hydrogen interactions during High energy reactive ball milling in hydrogen (HRBM) in presence of various types of carbon, including graphite (G), activated carbon (AC), multi-wall carbon nanotubes (MWCNT), expandable (EG) and thermally-expanded (TEG) graphite. Introduction of carbon significantly changes the hydrogenation behaviour, which becomes strongly dependent on the nature and amount of carbon additive. For the materials containing 1 wt.% AC or TEG, and 5 wt.% MWCNT, the hydrogenation becomes superior to that for the individual magnesium and finishes within 1 h. Analysis of the data indicates that carbon acts as a carrier of the “activated” hydrogen by a mechanism of spill-over. For Mg–G the hydrogenation starts from an incubation period and proceeds slower. An increase in the content of EG and TEG above 1 wt.% results in the deterioration of the hydrogenation kinetics. The effect of carbon additives has roots in their destruction during the HRBM to form graphene layers encapsulating the MgH2 nanoparticles and preventing the grain growth. This results in an increase of absorption–desorption cycle stability and a decrease of the MgH2 crystallite size in the re-hydrogenated Mg–C hybrid materials (40–125 nm) as compared to Mg alone (180 nm).  相似文献   

18.
Few-layer graphene (FLG) was investigated as an electrically-conductive interleaf layer for one-step electroplating and patterning of metal on nonconductive polymer substrates without using multiple and toxic pretreatment processes in traditional electroplating. An individual FLG (5–10 nm of thickness with 6.4% of oxygen content) was obtained by expanding graphite with microwave followed by exfoliating the expanded graphite with sonication in N-methyl-pyrrolidone. Stacking FLG in the in-plane direction, a robust FLG film was obtained by the vacuum-assisted filtering and drying methods, and transferred to a polyethylene terephthalate (PET) substrate via an intermediate transfer to the water surface. The sheet resistance of the FLG film on the PET substrate was 0.9 kΩ/sq with a thickness of 80 nm and the root-mean-square roughness of 29 nm. In the electroplating of nickel on the FLG film, hemisphere-shape metal seeds appeared in the early stage of electroplating and they subsequently grew up to 200–480 nm, which became connected to form a continuous nickel layer. The thickness of the continuous nickel layer increased linearly with electroplating time. The developed electroplating method demonstrated its capability of selective patterning on nonconductive substrates using a simple masking technique.  相似文献   

19.
Colorless octahedral diamonds up to 150 μm in size were spontaneously crystallized from carbon solutions in alkaline–carbonate melts in the Na2Mg(CO3)2–graphite and NaKMg(CO3)2–graphite systems at pressures of 8–10 GPa and temperatures of 1700–1800 °C. Seeded growth of carbonate–carbon (CC) diamond layers was realized on both octahedral {111} and cubic {100} faces of natural and synthetic “metal–carbon” (MC) diamond single crystals 0.5–0.7 mm in size. Scanning electron microscopy (SEM) morphology studies clearly demonstrate that a preferable mechanism of diamond growth from alkaline CC melts is the deposition of newly formed layers in parallel with octahedral faces, in much the same way as in the case of natural diamonds. A color cathodoluminescence (CL) SEM study shows that the specific feature of the CC diamonds is the lack of surface color CL as for natural diamonds of type II with lower nitrogen concentration. The CL spectra of the CC diamonds consist of three-band system H3, 575 nm, and a weak blue A-band. The structure of the H3 band closely resembles that of natural diamonds of type IIa.  相似文献   

20.
Artificial graphite containing abundant in situ grown onion-like carbon hollow nanostructures (OCHNs) was prepared from nickel nanoparticles doped pitch and natural graphite flakes by hot-pressing sintering method. Galvanostatic discharge–charge tests indicate that the synthetic graphite with abundant OCHNs exhibits a high specific capacity of 460 mA h g−1 at 20 mA g−1 as well as an excellent rate capability, with a reversible capacity of 220 mA h g−1 at 1 A g−1. Besides the advantages of common graphite anode materials, these superiorities make synthetic graphite a very promising anode for high-performance lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号