首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Ben Rabeh  B. Rezig 《Thin solid films》2007,515(15):5943-5948
Post-growth treatments in air atmosphere were performed on CuInS2 films prepared by the single-source thermal evaporation method. Their effect on the structural, optical and electrical properties of the films was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical reflection and transmission and resistance measurements. The films were annealed from 100 to 350 °C in air. The stability of the observed N-type conductivity after annealing depends strongly on the annealing temperature. Indeed it is shown that for annealing temperatures above 200 °C the N-type conductivity is stable. The resistance of the N-CuInS2 thin films correlates well with the corresponding annealing temperature. The samples after annealing have direct bandgap energies of 1.45-1.50 eV.  相似文献   

2.
《Materials Letters》2005,59(24-25):3164-3168
Structural and optical properties of non-doped and Sn-doped CuInS2 thin films grown by double source thermal evaporation method were studied. Sn deposition time is taken between 0 and 5 min. The films were annealed at 250 °C for 2 h in vacuum after evaporation. The X-ray diffraction spectra indicated that polycrystalline CuInS2 films were successfully obtained after annealing and no Sn binary or ternary phases are observed for the Sn time depositions less or equal to 5 min. The Sn-doped samples after annealing have bandgap energy of 1.45–1.49 eV. Furthermore, we found that the Sn-doped CuInS2 thin films exhibit N-type conductivity after annealing.  相似文献   

3.
M. Zribi  B. Rezig 《Thin solid films》2008,516(7):1476-1479
Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 °C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO2 phase for the annealing temperature above 400 °C.  相似文献   

4.
In this work, the preparation of In2O3-ZnO thin films by electron beam evaporation technique on glass substrates is reported. Optical and electrical properties of these films were investigated. The effect of dopant amount and annealing temperature on the optical and electrical properties of In2O3-ZnO thin films was also studied. Different amount of ZnO was used as dopant and the films were annealed at different temperature. The results showed that the most crystalline, transparent and uniform films with lowest resistivity were obtained using 25 wt% of ZnO annealed at 500 °C.  相似文献   

5.
Ruthenium dioxide thin films were reactively rf sputtered on SiO2/Si substrates and annealed in the temperature range from 150 to 500 °C. The structural and morphological properties of the films were investigated using Raman spectroscopy, transmission electron microscopy and atomic force microscopy. The increase of grain size was improved with annealing temperature. After annealing at 500 °C, the roughening of the RuO2/SiO2 interface was observed. The electrical behaviour was analysed by resistivity, thermal coefficient of resistance and low frequency noise. Good correlation between structural and electrical properties of RuO2 films was established.  相似文献   

6.
Kaibin Ruan 《Thin solid films》2008,516(16):5248-5251
(Bi3.2La0.4Nd0.4)Ti3O12 (BLNT) thin films were prepared on Pt/Ti/SiO2/Si substrates by using chemical solution deposition technique, and the effects of annealing temperatures in the range of 550-750 °C on structure and electrical properties of the thin films were investigated. X-ray diffraction analysis shows that the thin films have a bismuth-layered perovskite structure with preferred (117) orientation. The surface morphology observation by field-emission scanning electron microscopy confirms that films are dense and smooth with uniformly distributed grains. The grain size of the thin films increases with increasing annealing temperature; meanwhile, the structural distortion of the thin films also increases. It was demonstrated that the thin films show good electrical properties. The dielectric constant and dielectric loss are 191 and 0.028, respectively, at 10 kHz for the thin film annealed at 600 °C, and the 2Pr value of the thin film annealed at 700 °C is 20.5 μC/cm2 at an electric field of 500 kV/cm.  相似文献   

7.
B.L. Zhu  X.Z. Zhao  G.H. Li  J. Wu 《Vacuum》2010,84(11):1280-870
ZnO thin films were deposited on glass substrates at room temperature (RT) ∼500 °C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 °C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments; the grain size increased and stress relaxed for the films deposited at 200-500 °C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that Eg of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 °C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.  相似文献   

8.
Tungsten-oxide thin films are promising materials for use in highly effective gas-sensing devices for NO2, ozone and H2S detection in ambient air. In this work tungsten-oxide thin films were obtained by electron-beam deposition and annealed in the temperature range 350–800 °C for 1–3 h. The structure, morphology and phase composition of the as-deposited and annealed films were characterized by X-ray diffraction, SEM and AFM. The changes of phase composition and the microstructure in dependence of the annealing conditions are described in detail. The direction of the phase transformations for different annealing conditions is influenced by the very high macrostresses that appear as an additional, independent thermodynamic factor. During annealing at 350–400 °C for 1–3 h and at 800 °C for 1 h predominantly semiconductor phases are formed, whereas the thin films annealed at 500–600 °C for 1–3 h and 800 °C for 2 h consist mainly of phases with more pronounced metallic properties. The processes of realignment of crystal structures during solid-phase transformation lead not only to the growth of new crystallites with a preferential orientation but also to a change in the direction of preferred growth with increasing annealing temperature and time. The films can be divided into two main groups: compact (as-deposited and annealed at 350–500 °C for 1–3 h) and porous (annealed at 600–800 °C for 1–3 h) layers. The gas-sensing properties of these films and the correlation between microstructure and sensing properties will be described in the second part of this paper.  相似文献   

9.
Bi2VO5.5 ferroelectric thin films were fabricated on LaNiO3/Si(100) substrate via chemical solution deposition. Ferroelectric and dielectric properties of the thin films annealed at 500-700 °C were studied. The thin film annealed at 700 °C exhibited more favorable ferroelectric and dielectric properties than those annealed at lower temperatures. The values of remnant polarization 2Pr and coercive field Ec for the film annealed at 700 °C are 10.62 µC/cm2 and 106.3 kV/cm, respectively. The leakage current of the film is about 1.92 × 10− 8 A/cm2 at 6 V. The possible mechanism of the dependence of electrical properties of the films on the annealing temperature was discussed.  相似文献   

10.
Polycrystalline thin films of cadmium stannate (Cd2SnO4) were deposited by spray pyrolysis method on the Corning substrates at substrate temperature of 525 °C. Further, the films were annealed at 600 °C in vacuum for 30 min. These films were characterized for their structural, electrical and optical properties. The experimental results showed that the post-deposition annealing in vacuum has a significant influence on the properties of the films. The average grain size of the film was increased from 27.3 to 35.0 nm on heat treatment. The average optical transmittance in the visible region (500-850 nm) is decreased from 81.4% to 73.4% after annealing in vacuum. The minimum resistivity achieved in the present study for the vacuum annealed films is the lowest among the reported values for the Cd2SnO4 thin films prepared by spray pyrolysis method.  相似文献   

11.
In this study, CuFeO2 thin films were deposited onto quartz substrates using a sol-gel and a two-step annealing process. The sol-gel-derived films were annealed at 500 °C for 1 h in air and then annealed at 600 to 800 °C for 2 h in N2. X-ray diffraction patterns showed that the annealed sol-gel-derived films were CuO and CuFe2O4 phases in air annealing. When the films were annealed at 600 °C in N2, an additional CuFeO2 phase was detected. As the annealing temperature increased above 650 °C in N2, a single CuFeO2 phase was obtained. The binding energies of Cu-2p3/2, Fe-2p3/2, and O-1s were 932.5 ± 0.1 eV, 710.3 ± 0.2 eV and 530.0 ± 0.1 eV for CuFeO2 thin films. The chemical composition of CuFeO2 thin films was close to its stoichiometry, which was determined by X-ray photoelectron spectroscopy. Thermodynamic calculations can explain the formation of the CuFeO2 phase in this study. The optical bandgap of the CuFeO2 thin films was 3.05 eV, which is invariant with the annealing temperature in N2. The p-type characteristics of CuFeO2 thin films were confirmed by positive Hall coefficients and Seebeck coefficients. The electrical conductivities of CuFeO2 thin films were 0.28 S cm− 1 and 0.36 S cm− 1 during annealing at 650 °C and 700 °C, respectively, in N2. The corresponding carrier concentrations were 1.2 × 1018 cm− 3 (650 °C) and 5.3 × 1018 cm− 3 (700 °C). The activation energies for hole conduction were 140 meV (650 °C) and 110 meV (700 °C). These results demonstrate that sol-gel processing is a feasible preparation method for delafossite CuFeO2 thin films.  相似文献   

12.
Lead germanate-silicate (Pb5Ge2.85Si0.15O11) ferroelectric thin films were successfully fabricated on Pt/Ti/SiO2/(100)Si substrates by the sol-gel process. The thin films were fabricated by multi-coating at preheating temperatures of 350 and 450 °C. After annealing the thin films at 600 °C, the films exhibited c-axis preferred orientation. The degree of c-axis preferred orientation of the thin films preheated at 350 °C was higher than that of films preheated at 450 °C. Grain growth was influenced by the annealing time. The thin films exhibited a well-saturated ferroelectric P-E hysteresis loop when preheated at 350 °C and annealed at 600 °C for 1.5 h. The values of the remanent polarization (Pr) and the coercive field (Ec) were approximately 2.1 μC/cm2 and 100 kV/cm, respectively.  相似文献   

13.
Indium selenide thin films were deposited onto glass substrates kept at 150 °C by thermal evaporation of -In2Se3. Some of the films were annealed at 150 °C and 200 °C and they all were found to exhibit p-type conductivity without intentional doping. Scanning electron microscopy (SEM) established that the films have an atomic content of In51Se49. X-ray diffraction (XRD) indicated that the as-grown films were amorphous in nature and became polycrystalline -In2Se3 films after annealing. The analysis of conductivity temperature-dependence measurements in the range 320–100 K revealed that thermal excitation and thermionic emission of the carriers are the predominant conduction mechanisms above 200 K in the amorphous and polycrystalline samples, respectively. The carrier transport below 200 K is due to variable range hopping in all the samples. Hall measurements revealed that the mobility of the polycrystalline films is limited by the scattering of the charged carriers through the grain boundaries above 200 K. © 2001 Kluwer Academic Publishers  相似文献   

14.
Thin films of (WO3)1-x-(Fe2O3)x composition were deposited by thermal evaporation on glass substrates and then all samples were annealed at 200-500 °C in air. Optical properties such as transmittance, reflectance, optical bangap energy, and the optical constants of the “as deposited” and the annealed films were studied using ultraviolet-visible spectrophotometry. It was shown that the annealing process changes the film optical properties which were related to Fe2O3 concentration. Moreover, using X-ray photoelectron spectroscopy, we have indicated that WO3 is stoichiometric, while iron oxide was in both FeO and Fe2O3 compositions so that the FeO composition converted to Fe2O3 after the annealing process. Using atomic force microscopy, it was observed that surface of the “as deposited” films were smooth with a nanometric grain size. The film surface remained unchanged after annealing up to 300 °C. Surface roughness and the grain size of the films with x = 0, 0.05, and 0.75 highly increased at higher annealing temperatures (400 and 500 °C), but were nearly unchanged for medium x-values (0.3 and 0.4).  相似文献   

15.
Carbon nitride films were deposited by middle-frequency reactive magnetron sputtering and annealed at different temperatures in nitrogen ambient. X-ray photoelectron spectroscopy, Raman scattering, transmission electron microscopy, and nano-indenter were used to characterize the as-deposited and annealed films. The analysis showed that annealing resulted in the dissociation of N and C in the films. The dissociation of C happened after 500 °C and lagged behind that of N. With the increase of annealing temperature, the disorder of sp2 C decreased and the films were gradually graphitized. The microstructure changed from amorphous to fullerene-like CNx with the annealing temperature increasing to 500 °C, and then to nitridized graphite nanocrystals at 600 °C. The graphitization resulted in a drastic decreasing of hardness and modulus of the films.  相似文献   

16.
Cu2O thin films were first deposited using magnetron sputtering at 200 °C. The samples produced were then annealed by a rapid thermal annealing (RTA) system at 550 °C in a protective atmosphere with or without the addition of oxygen. After annealing, various Cu2O and CuO films were formed. These films were characterized, as a function of oxygen concentration in RTA, using UV-VIS photometer, four-point probe, and Hall measurement system. The results show that these Cu2O thin films annealed at 550 °C with more than 1.2% oxygen added in the protective argon atmosphere would transform into the CuO phase. Apparently, the results of RTA are sensitive to the amount of oxygen added in the protective atmosphere. The resistivity of these Cu2O thin films decreases with the increase in the oxygen amount in the annealing atmosphere, most likely due to the increase in carrier mobility. In addition, Cu2O/ZnO (doped with AlSc) junctions were produced at 200 °C and annealed. The rectifying effect of P-N junction disappeared after annealing, probably due to the damage of p-n interface, which directly causes current leakage at the junction.  相似文献   

17.
Thin films of TiO2 have been prepared by reactive evaporation of Ti2O3 at substrate temperatures from 150 °C to 350 °C and by post‐heating at 150 °C to 850 °C. The mass density of the films increases with increasing substrate and annealing temperature. The crystalline structure of the film prepared at 350 °C is anatase and becomes rutile upon annealing at 850 °C. All other films are amorphous as‐prepared and become anatase upon annealing above 250 °C. The crystallinity is higher for films prepared at lower temperature and does not increase with annealing temperature. Coatings with reproducible optical properties are obtained when deposited and post‐annealed at 250 °C.  相似文献   

18.
M.F. Al-Kuhaili 《Vacuum》2008,82(6):623-629
Thin films of copper oxide were deposited by thermal evaporation of cuprous oxide (Cu2O) powder. The substrates were either unheated or heated to a temperature of 300 °C. The films were also annealed in air at a temperature of 500 °C for 3 h. The films were characterized by X-ray photoelectron spectroscopy, X-ray diffraction and UV-visible spectrophotometry. The effects of the substrate temperature and post-deposition annealing on the chemical, structural and optical properties of the films were investigated. As-deposited films on unheated substrates consisted of mixed cupric oxide (CuO) and Cu2O phases, with a higher concentration of the Cu2O phase. However, the films deposited on heated substrates and the annealed films were predominantly of the CuO phase.  相似文献   

19.
The interdiffusion and intermetallic compound formation of Au-Ti bilayer thin films annealed at 125 to 350 °C have been investigated. The bilayer thin films were prepared through electron beam deposition at comparatively low temperature. The interdiffusion of annealed specimens was examined by measuring electrical resistance and the depth-composition profile, and by observation using a transmission electron microscope. Interdiffusion between the thin films was detected at temperature above 175°C in a vacuum of 10–4 Pa. The starting temperature at which interdiffusion occurred decreases with lowering annealing vacuum. The intermetallic compounds AuTi, Au4Ti, Au2Ti and Ti3Au form during annealing at over 250 °C. The activation energies of Au in Ti and Ti in Au obtained by the penetration depth are approximately 0.45 and 0.41 eV, respectively. These measurements indicate that the diffusion is controlled by a short-circuit mechanism. The diffusion of Ti species in Au depends on the annealing vacuum and Au thickness.  相似文献   

20.
Barium titanate (BaTiO3) thin films prepared on magnesia, silicon and strontium titanate substrates by r.f. sputtering has been investigated. As a function of substrate and annealing temperatures, the crystal structure and shape were examined by X-ray diffraction and scanning electron microscopy. Thin films were grown on both MgO and silicon substrates; they were amorphous when deposited on MgO if the substrate temperature was less than 450 °C, while for those grown on silicon the temperature had to be less than 500 °C. Above these elevated temperatures, the films were crystalline, with cubic symmetry. After annealing the thin films on magnesia, the crystal structure changed from cubic to tetragonal phase above 1100 °C; thebe c-axis or annealing thus caused the grain growth of the BaTiO3. The thin films on SrTiO3 were found toc-axis oriented tetragonal films for a substrate temperature above 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号