首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified by two-dimensional polyacrylamide gel electrophoresis a protein known as stathmin which is phosphorylated in a time- and concentration-dependent manner in response to brain-derived neurotrophic factor (BDNF) in primary cultures of cortical neurons. We show that stathmin phosphorylation is preceded by the activation of mitogen-activated protein kinase (MAPK) isoforms p44 and p42. Moreover, the MAPK kinase inhibitor PD 098059, which inhibits MAPK activation, also markedly reduces BDNF-stimulated phosphorylation of stathmin, therefore suggesting that phosphorylation of stathmin is triggered by the activation of MAPK. Phosphorylation of stathmin is specific for BDNF since nerve growth factor does not stimulate MAPK and stathmin phosphorylation in cultured cortical neurons. Taken together, these results identify stathmin as a new target protein of BDNF, possibly involved in the development of cortical neurons.  相似文献   

2.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), members of the nerve growth factor (NGF) gene family, have been suggested to play a role in experience-dependent modification of neural networks in the developing nervous system. In this study we addressed the question of whether these neurotrophins are involved in long-term potentiation (LTP) in developing visual cortex. We recorded layer II/III field potentials and whole-cell currents evoked by test stimulation of layer IV at 0.1 Hz in visual cortical slices prepared from young rats (postnatal day 15-25) and observed effects of BDNF, NT-3, and NGF on these responses. Then we analyzed the effects of these neurotrophins on LTP induced by tetanic (Theta-burst type) stimulation of layer IV. We found that BDNF at 200 ng/ml potentiated field potentials and EPSCs in most cases and that this potentiation lasted after cessation of the BDNF application. At the concentration of 20 ng/ml, BDNF did not show such an effect, but it enhanced the magnitude of expressed LTP. On the other hand, NT-3 and NGF had none of these effects. Immunohistochemical staining of slices with antibody against BDNF showed that exogenous BDNF penetrated into the whole slice within approximately 5 min of its application. The actions of BDNF were blocked by preincubation of slices with TrkB-IgG fusion protein, a BDNF scavenger, or coapplication of K252a, an inhibitor for receptor tyrosine kinases. TrkB-IgG or K252a itself completely blocked LTP, suggesting that endogenous BDNF or another TrkB ligand plays a role in LTP in the developing visual cortex.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) has been shown to promote the survival of dopaminergic neurons from the substantia nigra in cell culture. In order to assess whether a similar survival-promoting effect is present also in vivo, we grafted fetal nigral tissue to the dopamine-depleted striatum of 6-hydroxydopamine-lesioned rats receiving two-week intraventricular infusions or daily intrastriatal injections of BDNF, NGF, or vehicle. When infused chronically at a high dose (12 micrograms/day) into the lateral ventricle, BDNF caused a behavioral syndrome of reduced food and water intake, body weight loss, and locomotor hyperactivity in comparison to NGF- and vehicle-infused graft recipients. NGF-infused graft recipients displayed a transient weight loss during the first week of infusion. At 15 days, amphetamine-induced turning was significantly attenuated to 3% of pregraft values in BDNF-infused recipients, whereas functional graft effects were not present in NGF- or vehicle-infused animals. Survival of tyrosine hydroxylase-immunoreactive graft cells, however, was similar in all treatment groups. Notably, NGF- and BDNF-infusions led to a significant size increase of cholinergic host neurons in the medial septal nucleus and the vertical limb of the diagonal band ipsilateral to the infusion, whereas there was no cholinergic neuron hypertrophy in vehicle-infused animals. Daily intrastriatal injections of BDNF (2 micrograms) produced no weight loss or locomotor hyperactivity, but also enhanced functional graft effects in BDNF-injected, as compared to vehicle-injected animals. Survival rates of grafted tyrosine hydroxylase-immunoreactive cells were, however, similar in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Modulation of N-methyl-D-aspartate receptors in the brain by protein phosphorylation may play a central role in the regulation of synaptic plasticity. To examine the phosphorylation of the NR1 subunit of N-methyl-D-aspartate receptors in situ, we have generated several polyclonal antibodies that recognize the NR1 subunit only when specific serine residues are phosphorylated. Using these antibodies, we demonstrate that protein kinase C (PKC) phosphorylates serine residues 890 and 896 and cAMP-dependent protein kinase (PKA) phosphorylates serine residue 897 of the NR1 subunit. Activation of PKC and PKA together lead to the simultaneous phosphorylation of neighboring serine residues 896 and 897. Phosphorylation of serine 890 by PKC results in the dispersion of surface-associated clusters of the NR1 subunit expressed in fibroblasts, while phosphorylation of serine 896 and 897 has no effect on the subcellular distribution of NR1. The PKC-induced redistribution of the NR1 subunit in cells occurs within minutes of serine 890 phosphorylation and reverses upon dephosphorylation. These results demonstrate that PKA and PKC phosphorylate distinct residues within a small region of the NR1 subunit and differentially affect the subcellular distribution of the NR1 subunit.  相似文献   

5.
Our previous study has shown that the phases of circadian rhythms of ocular melatonin and dopamine are always opposite and intraocular melatonin injection suppresses dopamine release. Therefore, it is possible that dopamine rhythms result from inhibitory action of melatonin. We have examined this possibility in the following experiments. In the first experiment effects of continuous light on melatonin and dopamine release were examined. The data indicated that continuous light exposure resulted in loss of circadian rhythmicity of melatonin and dopamine by suppressing melatonin and enhancing dopamine levels throughout the day. To further examine the effects of light in the second experiment, 2 h light pulse was applied during the night, then temporal changes of melatonin and dopamine release were studied. The light pulse rapidly suppressed melatonin release, whereas it rapidly increased dopamine release. These changes occurred within 30 min in both melatonin and dopamine. However, the recovery after the cessation of the light stimulus was slower in melatonin than dopamine. In the third experiment it was tested if dopamine release was increased by lowering melatonin release with an intraocular injection of the D2 agonist, quinpirol. Although quinpirol strongly inhibited melatonin release independently of the time of injection, dopamine did not always increase by the inhibition of melatonin. These results indicate that ocular dopamine rhythms are not simply produced by melatonin inhibitory action.  相似文献   

6.
Neurotrophins (NTs) have recently been found to regulate synaptic transmission in the hippocampus. Whole-cell and single-channel recordings from cultured hippocampal neurons revealed a mechanism responsible for enhanced synaptic strength. Specifically, brain-derived neurotrophic factor augmented glutamate-evoked, but not acetylcholine-evoked, currents 3-fold and increased N-methyl-D-aspartic acid (NMDA) receptor open probability. Activation of trkB NT receptors was critical, as glutamate currents were not affected by nerve growth factor or NT-3, and increased open probability was prevented by the tyrosine kinase inhibitor K-252a. In addition, the NMDA receptor antagonist MK-801 blocked brain-derived neurotrophic factor enhancement of synaptic transmission, further suggesting that NTs modulate synaptic efficacy via changes in NMDA receptor function.  相似文献   

7.
8.
Evidence has accumulated to suggest that the NMDA glutamate receptor subtype plays an important role in neuronal degeneration evoked by hypoxia, ischemia, or trauma. Cerebellar granule cells in culture are vulnerable to NMDA-induced neuronal excitotoxicity. In these cells, brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (FGF2) prevent the excitotoxic effect of NMDA. However, little is known about the molecular mechanisms underlying the protective properties of these trophic factors. Using cultured rat cerebellar granule cells, we investigated whether BDNF and FGF2 prevent NMDA toxicity by downregulating NMDA receptor function. Western blot and RNase protection analyses were used to determine the expression of the various NMDA receptor subunits (NR1, NR2A, NR2B, and NR2C) after BDNF or FGF2 treatment. FGF2 and BDNF elicited a time-dependent decrease in the expression of NR2A and NR2C subunits. Because NMDA receptor activation leads to increased intracellular Ca2+ concentration ([Ca2+]i), we studied the effect of the BDNF- and FGF2-induced reduction in NR2A and NR2C synthesis on the NMDA-evoked Ca2+ responses by single-cell fura-2 fluorescence ratio imaging. BDNF and FGF2 reduced the NMDA-mediated [Ca2+]i increase with a time dependency that correlates with their ability to decrease NR2A and NR2C subunit expression, suggesting that these trophic factors also induce a functional downregulation of the NMDA receptor. Because sustained [Ca2+]i is believed to be causally related to neuronal injury, we suggest that BDNF and FGF2 may protect cerebellar granule cells against excitotoxicity by altering the NMDA receptor-Ca2+ signaling via a downregulation of NMDA receptor subunit expression.  相似文献   

9.
10.
The effects of brain-derived neurotrophic factor (BDNF) were investigated on synaptic transmission and two forms of activity-dependent synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), in visual cortex slices prepared from young (P21 -28) rats. The slices treated for 2-5 h in BDNF showed no difference from control slices when a 'strong' tetanus was used (theta-burst stimulation) to elicit a maximal level of LTP but displayed significantly greater synaptic potentiation in response to a 'weak' (20 Hz) tetanus. The BDNF-treated slices also showed significantly less LTD in response to a 1 Hz tetanus. Thus, BDNF treatment alters the relationship between stimulation frequency and synaptic plasticity in the visual cortex, shifting the modification threshold to the left. The effects of BDNF on LTP and LTD induction may be attributed to the significant enhancement of synaptic responses that was observed during conditioning stimulation. These data suggest that one role of BDNF during development of the visual cortex may be to modulate the properties of synaptic plasticity, enhancing synaptic strengthening and reducing synaptic weakening processes which contribute to the formation of specific synaptic connections.  相似文献   

11.
12.
Age-associated memory impairment occurs frequently in primates. Based on the established importance of both the perforant path and N-methyl-D-aspartate (NMDA) receptors in memory formation, we investigated the glutamate receptor distribution and immunofluorescence intensity within the dentate gyrus of juvenile, adult, and aged macaque monkeys with the combined use of subunit-specific antibodies and quantitative confocal laser scanning microscopy. Here we demonstrate that aged monkeys, compared to adult monkeys, exhibit a 30.6% decrease in the ratio of NMDA receptor subunit 1 (NMDAR1) immunofluorescence intensity within the distal dendrites of the dentate gyrus granule cells, which receive the perforant path input from the entorhinal cortex, relative to the proximal dendrites, which receive an intrinsic excitatory input from the dentate hilus. The intradendritic alteration in NMDAR1 immunofluorescence occurs without a similar alteration of non-NMDA receptor subunits. Further analyses using synaptophysin as a reflection of total synaptic density and microtubule-associated protein 2 as a dendritic structural marker demonstrated no significant difference in staining intensity or area across the molecular layer in aged animals compared to the younger animals. These findings suggest that, in aged monkeys, a circuit-specific alteration in the intradendritic concentration of NMDAR1 occurs without concomitant gross structural changes in dendritic morphology or a significant change in the total synaptic density across the molecular layer. This alteration in the NMDA receptor-mediated input to the hippocampus from the entorhinal cortex may represent a molecular/cellular substrate for age-associated memory impairments.  相似文献   

13.
Dopaminergic cells in the retina express the receptor for brain-derived neurotrophic factor (BDNF) (). To investigate whether BDNF can influence the development of the retinal dopaminergic pathway, we performed intraocular injections of BDNF during the second or third postnatal week and visualized the dopaminergic system with tyrosine hydroxylase (TH) immunohistochemistry. Both regimens of BDNF treatment caused an increase in TH immunoreactivity in stratum 1 and stratum 3 of the inner plexiform layer (IPL). D2 dopamine receptor immunoreactivity, a presynaptic marker of dopaminergic cells (), was also increased in stratum 1 and stratum 3 of the inner plexiform layer. These data suggest that BDNF causes sprouting of dopaminergic fibers in the inner plexiform layer. Other neurochemical systems, for example, the cholinergic amacrine cells, remained unaffected. Similar effects were observed after injections of neurotrophin-3 and neurotrophin-4, but not nerve growth factor. Analysis of whole-mounted TH-immunolabeled retinae revealed hypertrophy of dopaminergic cells (+41% in soma areas; p < 0.01) and an increase of labeled dopaminergic varicosities in stratum 1 of the IPL (+51%; p < 0.01) after BDNF treatment. The opposite was observed in mice homozygous for a null mutation of the bdnf gene: dopaminergic cells were atrophic (-22.5% in soma areas; p < 0.05), and the density of TH-positive varicosities in stratum 1 was reduced (57%; p < 0.01). We conclude that BDNF controls the development of the retinal dopaminergic network and may be particularly important in determining the density of dopaminergic innervation in the retina.  相似文献   

14.
15.
Hippocampal levels of mRNA encoding nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are rapidly induced by enhanced neuronal activity following seizures and glutamate or muscarinic receptor activation. However, the levels of neurotrophin-3 (NT-3) mRNA acutely decrease after limbic seizures suggesting that a different mode of regulation may exist for these neurotrophins. Here we show that BDNF and neutrotrophin-4 (NT-4), but not NT-3 itself, up-regulate NT-3 mRNA in cultured hippocampal neurons. In the rat hippocampus, the muscarinic receptor agonist, pilocarpine increased BDNF mRNA levels rapidly and those of NT-3 with a delay of several hours. Injection of BDNF into neonatal rats elevated NT-3 mRNA in the hippocampus which demonstrates that BDNF is able to enhance NT-3 expression in vivo. The regulation of NT-3 by BDNF and NT-4 enlargens the neurotrophic spectrum of these neurotrophins to include neuron populations responsive primarily to NT-3.  相似文献   

16.
The tyrosine kinase TrkB is a receptor for the neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). Retinal ganglion cells are responsive to BDNF, and TrkB has been localized in ganglion cells as well as in a subpopulation of amacrine cells in the retina of the chicken and the rat. In the present paper, we analyzed the distribution of TrkB immunoreactivity in the retina of marmoset monkeys, ferrets, rabbits, rats, mice, chickens, pigeons, barn owls, Pseudemys turtles, Xenopus frogs, goldfishes, and carps. TrkB antibodies gave a positive reaction in all of these vertebrates. TrkB immunoreactivity was detected in the majority of retinal ganglion cells. Some amacrine cells also contained TrkB immunoreactivity; they were located mainly at the vitreal border of the inner nuclear layer, and their relative abundance varied in the different species. Until now, no information has been available concerning the neurochemical identity of the amacrine neurons containing TrkB. In some species (marmoset monkeys, rats, pigeons), we observed that the morphology and location of TrkB-immunoreactive amacrine cells was reminiscent of that of the well-described dopaminergic cells. To determine whether dopaminergic amacrine cells contained TrkB immunoreactivity, we therefore performed double-labelling immunohistochemistry by using tyrosine hydroxylase (TH) antibodies in combination with TrkB antibodies in marmoset monkeys, rats, pigeons, Pseudemys turtles, and goldfishes. The most novel finding of the present paper is that, in all of these species, the majority of dopaminergic neurons were found to contain TrkB immunoreactivity. Dopaminergic neurons, on the other hand, represented only a fraction of the TrkB+ amacrine cells. Our data suggest that BDNF and/or NT-4 might modulate expression of TH in the retina and may therefore influence the retinal dopaminergic system. Whatever the action of TrkB ligands on the retinal dopaminergic system, it was conserved during vertebrate evolution.  相似文献   

17.
Glycine is an essential co-agonist of the excitatory N-methyl-D-aspartate (NMDA) receptor, a subtype of the ionotropic glutamate receptor family. The glycine binding site of this hetero-oligomeric ion channel protein is formed by two distinct extracellular regions, S1 and S2, of the NR1 subunit, whereas the homologous domains of the NR2 subunit mediate glutamate binding. Here, segments S1 and S2 of the NR1 polypeptide were fused via a linker peptide followed by N- and C-terminally tagging with Flag and His6 epitopes, respectively. Infection of High Five insect cells with a recombinant baculovirus containing this glycine binding site construct resulted in efficient secretion of a soluble fusion protein of about 53 kDa. After affinity purification to near-homogeneity, the fusion protein bound the competitive glycine site antagonist [3H]MDL105,519 with high affinity (Kd = 5.22 +/- 0. 13 nM) similar to that determined with rat brain membrane fractions. This high affinity binding could be competed by the glycine site antagonist 7-chlorokynurenic acid as well as the agonists glycine and D-serine but not by L-glutamate. This indicates that the S1 and S2 domains of the NR1 subunit are sufficient for the formation of a glycine binding site that displays pharmacological properties similar to those of the NMDA receptor in vivo.  相似文献   

18.
Cell surface expression of the NR1a subunit has been examined in mouse L cell lines permanently transfected with the complementary DNA for human NR1a or with the complementary DNAs for NR1a and NR2A. The expression of the subunits was under the control of the murine mammary tumour virus promoter and following induction of expression by dexamethazone both cell lines expressed high levels of the NR1a subunit as determined by immunofluorescence using permeabilized cells and immunoblotting of cell membranes with subunit specific antibodies. However, cell surface expression of the NR1a subunit was found only in the cells expressing both the NR1a and NR2A subunits. This was confirmed by cell surface biotinylation of the two cell lines and affinity isolation of the receptor subunits. To determine if this result was solely due to the use of a particular cell line and or the choice of expression vector, Cos-7 cells were transiently transfected with either NR1a or NR1a plus NR2A. Here too cell surface expression was only found following co-transfection of both subunits.  相似文献   

19.
Here we show that brain-derived neurotrophic factor (BDNF) stimulates both the phosphorylation of the Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) and its kinase activity in rat hippocampal slices. In addition, we find that: (i) the time course of BDNF action is not accompanied by a change in the spectrum of either alpha- and beta-subunits of CaMK2 detected by immunoblotting; (ii) both treatment of solubilized CaMK2 with alkaline phosphatase and treatment of immunoprecipitated CaMK2 with protein phosphatase 1 reverse phosphorylation and activation of the kinase; (iii) phospholipase C inhibitor D609 and intracellular Ca2+ chelation by 1,2-bis-(o-aminophenoxy)ethane-N,N,N",N',-tetracetic acid tetra(acetoxymethyl)ester or 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate but not omission of Ca2+ or Ca2+ chelation by EGTA, abolish the stimulatory effect of BDNF on phosphorylation and activation of CaMK2. These results strongly suggest that the conversion of CaMK2 into its active, autophosphorylated form, but not its concentration, is increased by BDNF via stimulation of phospholipase C and subsequent intracellular Ca2+ mobilization.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus. J. Neurophysiol. 80: 3383-3386, 1998. Brain-derived neurotrophic factor (BDNF) has been reported to have rapid effects on synaptic transmission in the hippocampus. We report here that bath application of BDNF causes a small but significant decrease in stimulus-evoked inhibitory postsynaptic currents (IPSCs) on CA1 pyramidal cells, which is prevented by the tyrosine kinase inhibitor lavendustin A. BDNF causes a decrease in the 1/CV2 of the IPSC, and also reduces paired-pulse depression of the IPSC, suggesting a presynaptic site of action. In contrast, BDNF did not have a detectable effect on field excitatory postsynaptic potentials measured in stratum radiatum. We conclude that BDNF has a selective depressant action on inhibitory transmission in the hippocampus, due at least in part to a presynaptic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号