首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in gas chromatography combustion-isotope ratio mass spectrometry (GCC-IRMS) has made compound-specific isotope analysis routine, but reports on position-specific isotopic analysis are still scarce. On-line GC-pyrolysis (Py) coupled to GCC-IRMS is reported here for isolation and isotopic characterization of alaninol and phenethylamine, analogues of alanine and phenylalanine, respectively. Ideally, pyrolytic fragments will originate from unique sites within the parent molecule, and isotope ratios for each position within the parent can either be measured directly or calculated from fragment isotope ratios without substantially degrading the analytical precision. Alaninol pyrolysis yielded several fragments, of which CO and CH4 were used for isotope ratio calculations. Isotope labeling experiments showed that CO derived entirely from the C(1) position, while all three positions of alaninol contributed to CH4 (29.0 +/- 0.3% from C(1), 3.6 +/- 0.2% from C(2), and 66.9 +/- 1.1% from C(3)). We demonstrate iterative use of mass balance to calculate isotope ratios from all positions despite the nonideal positional fidelity of CH4. Pyrolysis of phenethylamine generated benzene and toluene fragments. Benzene derived entirely from C(ring), and toluene was proportionately formed from C(3) and C(ring). Relative intramolecular isotope ratios (Deltadelta13C) were calculated directly from delta13C of fragments or indirectly by mass balance. Though the C(3) isotope ratio was calculated from the benzene and toluene fragments, propagation of errors showed that the final precision of the determination was degraded due to the small contribution that C(3) makes to toluene. Samples of each amino acid from four different vendors showed natural variability between sources, especially at the C(1) position of alaninol (range of Deltadelta13C approximately 50 per thousand). The average precision was SD(Deltadelta13C) < 0.20 per thousand for directly measured positions of alaninol and phenethylamine. The precision of indirectly measured positions was poorer (SD(Deltadelta13C) = 0.94 per thousand for alaninol, 6.54 per thousand for phenethylamine) due to propagation of errors. These data demonstrate that GC-Py-GCC-IRMS data can be used to extract high-precision isotope ratios from amino acids despite nonideal positional fidelity in fragments and that natural intramolecular variability in delta13C can be used to distinguish different sources of amino acids.  相似文献   

2.
We report an automated method for high-precision position-specific isotope analysis (PSIA) of carbon in amino acid analogues. Carbon isotope ratios are measured for gas-phase pyrolysis fragments from multiple sources of 3-methylthiopropylamine (3MTP) and isoamylamine (IAA), the decarboxylated analogues of methionine and leucine, using a home-built gas chromatography (GC)-pyrolysis-GC preparation system coupled to a combustion-isotope ratio mass spectrometry system. Over a temperature range of 620-900 degrees C, the characteristic pyrolysis products for 3MTP were CH4, C2H6, HCN, and CH3CN and for IAA products were propylene, isobutylene, HCN, and CH3CN. Fragment origin was confirmed by 13C-labeling, and fragments used for isotope analysis were generated from unique moieties with > 95% structural fidelity. Isotope ratios for the fragments were determined with an average precision of SD(delta13C) < 0.3% per thousand, and relative isotope ratios of fragments from different sources were determined with an average precision of SD(delta(delta)13C) < 0.5% per thousand. Delta(delta)13C values of fragments were invariant over a range of pyrolysis temperatures. The delta(delta)13C of complementary fragments in IAA was within 0.8% per thousand of the delta(delta)13C of the parent compounds, indicating that pyrolysis-induced isotopic fractionation is effectively taken into account with this calibration procedure. Using delta(delta)13C values of fragments, delta(delta)13C values were determined for all four carbon positions of 3MTP and for C1, C2, and the propyl moiety of IAA, either directly or indirectly by mass balance. Large variations in position-specific isotope ratios were observed in samples from different commercial sources. Most dramatically, two 3MTP sources differed by 16.30% per thousand at C1, 48.33% per thousand at C2, 0.37% per thousand at C3, and 5.36% per thousand at C(methyl). These PSIA techniques are suitable for studying subtle changes in intramolecular isotope ratios due to natural processes.  相似文献   

3.
We present a rapid and selective method to increase the volatility of tyrosine and phenylalanine without adding derivative C for high-precision gas chromatography-continuous-flow isotope ratio mass spectrometry (GCC-IRMS) based on enzymatic decarboxylation to yield alkylamines and evaluated for 15N isotopic integrity. Purified tyrosine and phenylalanine were converted to tyramine and phenethylamine by tyrosine and phenylalanine decarboxylases, respectively. GC separation was achieved using a thick stationary phase (5-microm) capillary column. Recoveries were 95 +/- 2%. The reproducibility of delta15N of tyramine and phenethylamine measured by GCC-IRMS averaged SD(delta15N) = 0.33 per thousand. The absolute differences between delta15N of amino acids measured by elemental analyzer-IRMS and the alkylamines measured by GCC-IRMS was not significant. Phenethylamine and tyramine prepared from a mixture of 18 amino acids were extracted by ethanol with 95% recovery, and analysis yielded clean chromatograms and equivalent precision. These data indicate that enzymatic decarboxylation of phenylalanine and tyrosine is a convenient method to increase their volatility for continuous-flow isotopic analysis without introducing extraneous C or significant isotopic fractionation.  相似文献   

4.
Intramolecular carbon isotope ratios reflect the source of a compound and the reaction conditions prevailing during synthesis and degradation. We report here a method for determination of relative (Deltadelta13C) and absolute (delta13C) intramolecular isotope ratios using the volatile lactic acid analogue propylene glycol as a model compound, measured by on-line gas chromatography-pyrolysis coupled to GC-combustion-isotope ratio mass spectrometry. Pyrolytic fragmentation of about one-third of the analyte mass produces optimal fragments for isotopic analysis, from which relative isotope ratios (Deltadelta13C) are calculated according to guidelines presented previously. Calibration to obtain absolute isotope ratios is achieved by quantifying isotope fractionation during pyrolysis with an average fractionation factor, alpha, and evaluated by considering extremes in isotopic fractionation behavior. The method is demonstrated by calculating ranges of absolute intramolecular isotope ratios in four samples of propylene glycol. Relative and absolute isotope ratios were calculated with average precisions of SD(Deltadelta13C) <0.84 per thousand and SD(delta13C) <3.0 per thousand, respectively. The various fractionation scenarios produce an average delta(13)C range of 2 per thousand for each position in each sample. Relative isotope ratios revealed all four samples originated from unique sources, with samples A, B, and D only distinguishable at the position-specific level. Regardless of pyrolysis fractionation distribution, absolute isotope ratios showed a consistent pattern for all samples, with delta13C(3) > delta13C(2) > delta13C(1). The validity of the method was determined by examining the difference in relative isotope ratios calculated through two independent methods: Deltadelta13C calculated directly using previous methods and Deltadelta13C extracted from absolute isotope ratios. Deviation between the two Deltadelta13C values for all positions averaged 0.1-0.2 per thousand, with the smallest deviation obtained assuming equal fractionation across all fragment positions. This approach applies generally to all compounds analyzed by pyrolytic PSIA.  相似文献   

5.
A novel derivatization procedure, N-acetyl methyl (NACME) esterification, was developed to improve the accuracy and precision of amino acid delta13C value determination using gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS). Standard mixtures of 15 protein amino acids were converted to NACME and N-acetyl-isopropyl (NAIP) esters; the latter established derivative was employed for comparison purposes. Both procedures yielded baseline-resolved peaks for all 15 amino acids when GC columns coated with polar stationary phases were employed. For NACME esters, the methylation conditions governed reaction yields, with highest yields observed when a 1 h, 70 degrees C methylation procedure (anhydrous MeOH/acetyl chloride, 25:4, v/v) was performed. The mean derivatization yields expressed relative to an underivatized coinjected standard (n-nonadecane) for both NACME and NAIP esters were identical. Likewise, the mean kinetic isotope effects (KIEs) were not significantly different (KIE(NACME) = 1.036; KIE(NAIP) = 1.038) and were shown in both cases to be reproducible. The mean reproducibility obtained from 15 replicates (3 x batches of 5) of both derivatives was strong (mean STDV(NACME) = 0.3 per thousand and STDV(NAIP) = 0.4 per thousand). The isotopic robustness of both derivatization procedures was observed over a concentration range of 52,500 microg of amino acid. NACME esters displayed low errors (+/-0.6 per thousand for phenylalanine to +/-1.1 per thousand for serine) due to the higher sample-to-derivative carbon ratio of this derivative. Finally, the integrity of the new NACME procedure was confirmed through analysis of diet and bone collagen amino acids of rats reared on C3 or C4 diets, which indicated the high degree of both accuracy and precision of the delta13C values obtained for individual amino acids.  相似文献   

6.
Amino acids are routinely derivatized using carbon-containing groups prior to gas chromatography continuous-flow isotope ratio mass spectrometry (GCC-IRMS). Derivative C contaminates analyte C because the entire derivatized compound is combusted to CO2. Correction procedures are required to extract the analyte isotope ratio. We present a method for reduction of six nonpolar amino acids to their corresponding amino alcohols, demonstrate a GC strategy to produce acceptable peak shapes from the resulting strongly H-bonding analytes, and present isotopic analysis for amino acids and their corresponding amino alcohols to evaluate any possible isotopic fractionation. Alanine, valine, leucine, isoleucine, methionine, or phenylalanine was reduced using NaBH4 in THF with I2 as an electrophile. Reactions were performed with 2 g of analyte to permit isotopic analysis by conventional elemental analysis-IRMS. All reactions were quantitative as assessed by IR spectra, melting points, and GC. Recovery from the reaction mixture was 60-84%. GC separation of a mixture of the six amino alcohols was achieved using a thick stationary-phase (5 microm) capillary column to avoid tailing due to hydrogen bonding to the walls of the fused-silica capillary. The reproducibility of GCC-IRMS determinations of amino alcohols averaged SD(613C) = 0.25 +/- 0.19%. The absolute differences between delta13C of amino acids measured by an elemental analyzer coupled to IRMS and amino alcohols measured by GCC-IRMS was delta613C = 0.14% and showed no general trend. Reactions performed with 2 mg of analyte yielded equivalent chromatograms. These data indicate that the reduction method does not induce isotopic fractionation and can be used for continuous-flow isotopic analysis to avoid addition of contaminating carbon.  相似文献   

7.
Zhang L  Altabet MA  Wu T  Hadas O 《Analytical chemistry》2007,79(14):5297-5303
We report a new method for determining the 15N/14N of NH4+ at natural abundance level in both freshwater and seawater. NH4+ is first quantitatively oxidized to NO2- by hypobromite (BrO-) at pH approximately 12. After the addition of sodium arsenite to consume excess BrO-, yield is verified by colorimetric NO2- determination. NO2- is further reduced to N2O using a 1:1 sodium azide and acetic acid buffer solution using previously established procedures. The product N2O is then analyzed for isotopic composition using a continuous flow purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. Reliable delta 15N values (standard deviation is 0.3 per thousand or better) are obtained over an NH4+ concentration range of 0.5-10 microM using 20 mL volumes of either freshwater or seawater samples. Higher concentration samples are readily diluted to lower concentration. Preexisting NO2- is removed by treatment with sulfanilic acid. There is no interference from any of the nitrogen-containing compounds tested except short-chain aliphatic amino acids (i.e., glycine) which typically are present at very low environmental concentrations. As compared to published methods, our approach is more robust, readily applicable at low concentrations and small sample volumes, and requires less time for preparation and analysis.  相似文献   

8.
Nitrite is an important intermediate species in the biogeochemical cycling of nitrogen, but its role in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources and transformations of NO2- in the environment, but methods for independent isotopic analyses of NO2- in the presence of other N species are still new and evolving. This study demonstrates that isotopic analyses of N and O in NO2- can be done by treating whole freshwater or saltwater samples with the denitrifying bacterium Stenotrophomonas nitritireducens, which selectively reduces NO2- to N2O for isotope ratio mass spectrometry. When calibrated with solutions containing NO2- with known isotopic compositions determined independently, reproducible delta15N and delta18O values were obtained at both natural-abundance levels (+/-0.2-0.5 per thousand for delta15N and +/-0.4-1.0 per thousand for delta18O) and moderately enriched 15N tracer levels (+/-20-50 per thousand for delta15N near 5000 per thousand) for 5-20 nmol of NO2- (1-20 micromol/L in 1-5 mL aliquots). This method is highly selective for NO2- and was used for mixed samples containing both NO2- and NO3- with little or no measurable cross-contamination. In addition, mixed samples that were analyzed with S. nitritireducens were treated subsequently with Pseudomonas aureofaciens to reduce the NO3- in the absence of NO2-, providing isotopic analyses of NO2- and NO3- separately in the same aliquot. Sequential bacterial reduction methods like this one should be useful for a variety of isotopic studies aimed at understanding nitrogen cycling in aquatic environments. A test of these methods in an agricultural watershed in Indiana provides isotopic evidence for both nitrification and denitrification as sources of NO2- in a small stream.  相似文献   

9.
We report the first coupling of comprehensive two-dimensional gas chromatography (GC x GC) to online combustion isotope ratio mass spectrometry (C-IRMS). A GC x GC system, equipped with a longitudinally modulated cryogenic system (LMCS), was interfaced to an optimized low dead volume combustion interface to preserve <300 ms full width at half-maximum (fwhm) fast GC peaks generated on the second GC column (GC2). The IRMS detector amplifiers were modified by configuration of resistors and capacitors to enable fast response, and a home-built system acquired data at 25 Hz. Software was home-written to handle isotopic time shifts of less than one bin (40 ms) and to integrate peak slices to recover isotope ratios from cryogenically sliced peaks. The performance of the GC x GCC-IRMS system was evaluated by isotopic analysis of urinary steroid standards. Steroids were separated by a nonpolar GC1 column (30 m x 0.25 mm, 5% phenyl), modulated into multiple 4- or 8-s cryogenic slices by the LMCS, and then separated on a polar GC2 column (1 or 2 m x 0.1 mm, 50% phenyl). GC2 peak widths from a 1-m column averaged 276 ms fwhm. Steroid standard sliced peaks were successfully reconstructed to yield delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.30 per thousand and average accuracies within 0.34 per thousand, at 8 ng on column. Two steroids, coeluting in GC1, were baseline separated in GC2 and resulted in delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.86 per thousand and average accuracies within 0.26 per thousand, at 3 ng on column. Results from this prototype system demonstrate that the enhanced peak capacity and signal available in GC x GC is compatible with high-precision carbon isotope analysis.  相似文献   

10.
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (<1.3 per thousand). Limits of detection (LODs) for delta13C analysis by SPME-GC/IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations <0.8 per thousand) for all NACs except for TNT. delta15N signatures matched the reference values obtained by EA-IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.  相似文献   

11.
We describe a new continuous extraction system for trapped air from bubble ice or water for on-line determination of the isotopic composition of the main air components nitrogen and oxygen (delta15N, delta18O, and delta17O). Studies of the composition of air from bubbles trapped in polar ice are providing fundamental information about ancient atmospheric composition and, therefore, are an important tool to learn more about Earth's climate. The new system proved to work reliably for standard air admixed and subsequently removed from a water stream. The precision (1 SD) of standard measurements is approximately 0.04/1000 for delta15N, approximately 0.1/1000 for delta18O, and approximately 0.15/1000 for delta17O. Ice measurements with the new on-line system are promising. Continuous measurements of nitrogen as well as oxygen isotope ratios can be performed with a spatial resolution of approximately 3 cm and nearly the same precision as for the standards. However, the measured delta values of ice are generally lower, as compared to ice measured with conventional techniques, as a result of a time-dependent dissolution process of air in water associated with kinetic fractionation, which affects standard and sample differently. By modeling the dynamics of the this dissolution process, we found a reason for the lack of accuracy and propose an improvement of the system that will lead to a better accuracy of the ice measurements.  相似文献   

12.
A thermal decomposition method was developed and tested for the simultaneous determination of delta 18O and delta 17O in nitrate. The thermal decomposition of AgNO3 allows for the rapid and accurate determination of 18O/ 16O and 17O/16O isotopic ratios with a precision of +/- 1.5 per thousand for delta 18O and +/- 0.11 per thousand for delta 17O (delta 17O = delta 17O - 0.52 x delta 18O). The international nitrate isotope reference material IAEA-NO3 yielded a delta 18O value of +23.6 per thousand and delta 17O of -0.2 per thousand, consistent with normal terrestrial mass-dependent isotopic ratios. In contrast, a large sample of NaNO3 from the Atacama Desert, Chile, was found to have delta 17O = 21.56 +/- 0.11 per thousand and delta 18O = 54.9 +/- 1.5 per thousand, demonstrating a substantial mass-independent isotopic composition consistent with the proposed atmospheric origin of the desert nitrate. It is suggested that this sample (designated USGS-35) can be used to generate other gases (CO2, CO, N2O, O2) with the same delta 17O to serve as measurement references for a variety of applications involving mass-independent isotopic compositions in environmental studies.  相似文献   

13.
The utility of liquid chromatography coupled to the isotope ratio mass spectrometry technique (LC-IRMS) has already been established through a variety of successful applications. However, the analytical constraint related to the use of aqueous mobile phases limits the LC separation mechanism. We report here a new strategy for high-precision (13)C isotopic analyses based on temperature-programmed LC-IRMS using aqueous mobile phases. Under these conditions, the isotopic precision and accuracy were studied. On one hand, experiments were carried out with phenolic acids using isothermal LC conditions at high temperature (170 degrees C); on the other hand, several experiments were performed by ramping the temperature, as conventionally used in a gas chromatography-based method with hydrosoluble fatty acids and pulses of CO 2 reference gas. In isothermal conditions at 170 degrees C, despite the increase of the CO 2 background, p-coumaric acid and its glucuronide conjugate gave reliable isotopic ratios compared to flow injection analysis-isotopic ratio mass spectrometry (FIA-IRMS) analyses (isotopic precision and accuracy are lower than 0.3 per thousand). On the opposite, for its sulfate conjugate, the isotopic accuracy is affected by its coelution with p-coumaric acid. Not surprisingly, this study also demonstrates that at high temperature (170 degrees C), a compound eluting with long residence time (i.e., ferulic acid) is degraded, affecting thus the delta (13)C (drift of 3 per thousand) and the peak area (compared to FIA-IRMS analysis at room temperature). Quantitation is also reported in isothermal conditions for p-coumaric acid in the range of 10-400 ng/mL and with benzoic acid as an internal standard. For temperature gradient LC-IRMS, in the area of the LC gradient (set up at 20 degrees C/min), the drift of the background observed produces a nonlinearity of SD (delta (13)C) approximately 0.01 per thousand/mV. To circumvent this drift, which impacts severely the precision and accuracy, an alternative approach, i.e., eluting the compound on the plateau of temperature studied was reported here. Other experiments with temperature-programmed LC-IRMS experiments are also reported with the presence of methanol in the injected solution to mimic residual solvent originating from the sample preparation or to slightly increase the solubility of the targeted compound for high-precision measurement.  相似文献   

14.
The analysis of the stable nitrogen isotope compositions of individual amino acid stereoisomers through the use of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is presented. Nitrogen isotopic compositions of single amino acids or of their enantiomers is possible without the labor-intensive and time-consuming preparative-scale chromatographic procedures required for conventional stable isotope analysis. Following hydrolysis and derivatization, single-component isotope analysis is accomplished on nanomole quantities of each of the stereoisomers of an amino acid, utilizing the effluent stream of gas chromatographic separation. Nitrogen isotope fractionation is minimal during acylation of the amino acid, with no additional nitrogen being added stoichiometrically to the derivative. Thus, the isotopic composition of the nitrogen in the derivative is that of the original compound. Replicate stable nitrogen isotope analyses of 11 amino acids, and their trifluoroacetyl (TFA)/isopropyl (IP) ester derivatives, determined by both conventional isotope ratio mass spectrometry (IRMS) and GC/C/IRMS, indicate that the GC procedure is highly reproducible (standard deviations typically 0.3-0.4‰) and that isotopic differences between the amino acid and its TFA/IP derivative are, in general, less than 0.5‰.  相似文献   

15.
We report a new method developed for the determination of stable carbon isotopic composition of homologous alpha,omega-dicarboxylic acids and phthalic acid isolated from environmental samples such as atmospheric aerosols and snow. Dicarboxylic acids are derivatized with BF3/1-butanol to dibutyl esters, which are analyzed for the stable carbon isotopic composition using a capillary GC interfaced to on-line combustion isotope ratio mass spectrometer. The delta13C values for individual dicarboxylic acid are then calculated from delta13C of 1-butanol and butyl ester derivative using a mass balance equation. The accuracy of the delta13C measurement for C2-C10 diacids is within 0.8 per thousand. We report a few examples of the delta13C ratios of saturated C2-C9 alpha,omega-dicarboxylic acids, unsaturated (maleic, phthalic) diacids, and oxocarboxylic acids in the aerosol and snow samples.  相似文献   

16.
We have constructed a cavity ring-down spectrometer employing a near-IR external cavity diode laser capable of measuring 13C/12C isotopic ratios in CO2 in human breath. The system, which has a demonstrated minimum detectable absorption loss of 3.2 x 10(-11) cm(-1) Hz(-1/2), determines the isotopic ratio of 13C16O16O/12C16O16O by measuring the intensities of rotationally resolved absorption features of each species. As in isotope ratio mass spectrometry (IRMS), the isotopic ratio of a sample is compared to that of a standard CO2 sample calibrated to the Pee Dee Belemnite scale and reported as the sample's delta13C value. Measurements of eight replicate CO2 samples standardized by IRMS and consisting of 5% CO2 in N2 at atmospheric pressure demonstrated a precision of 0.22/1000 for the technique. Delta13C values were also obtained for breath samples from individuals testing positive and negative for the presence of Helicobacter pylori, the leading cause of peptic ulcers in humans. This study demonstrates the ability of the instrument to obtain delta13C values in breath samples with sufficient precision to serve as a useful medical diagnostic.  相似文献   

17.
The use of highly enriched, uniformly labeled fatty acid ([U-13C]) with analysis by high-precision gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) has been evaluated as a metabolic tracer technique. 13C/12C ratios are routinely determined to precisions (SD) of less than 0.00001 (delta PDB less than 1/1000) for greater than 10 ng of fatty acid, and less than 0.001 (delta PDB less than 100/1000) for samples of 30 pg of fatty acid, the latter corresponding to a 100-fmol sample. Baseline fatty acid 13C/12C in human plasma fractions is shown to fluctuate not more than 0.000 04 (delta PDB 4/1000) over 10 h. 13C/12C enrichments greater than 0.001 (delta PDB 100/1000) are obtained in a fatty acid plasma fraction subsequent to a 10-mg dose of 42% 13C-labeled stearic acid to a 78-kg adult. Biokinetics are discerned over an 13C/12C enrichment range of less than 0.0002 (approximately 13/1000 in delta PDB units) in plasma. A means for correction of isotope ratio contamination due to carbon-containing derivatives is presented. High-precision GCC-IRMS used in concert with highly enriched tracers is shown to possess advantages versus organic GC/MS for stable isotopic tracer detection and is superior to radiotracer methods in terms of dose sizes and analysis efficiency.  相似文献   

18.
This work describes an approach to differential metabolomics that involves stable isotope labeling for relative quantification as part of sample analysis by two-dimensional gas chromatography/mass spectrometry (GCxGC/MS). The polar metabolome in control and experimental samples was extracted and differentially derivatized using isotopically light and heavy (D6) forms of the silylation reagent N-methyl-N-tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA). MTBSTFA derivatives are of much greater hydrolytic stability than the more common trimethylsilyl derivatives, thus diminishing the possibility of isotopomer scrambling during GC analysis. Subsequent to derivatization with MTBSTFA, differentially labeled samples were mixed and analyzed by GCxGC/MS. Metabolites were identified, and the isotope ratio of isotopomers was quantified. The method was tested using three classes of metabolites; amino acids, fatty acids, and organic acids. The relative concentration of isotopically labeled metabolites was determined by isotope ratio analysis. The accuracy and precision, respectively, in quantification of standard mixtures was 9.5 and 4.77% for the 16 amino acids, 9.7 and 2.83% for the mixture of 19 fatty acids, and 14 and 4.53% for the 20 organic acids. Suitability of the method for the examination of complex samples was demonstrated in analyses of the spiked blood serum samples. This differential isotope coding method proved to be an effective means to compare the concentration of metabolites between two samples simultaneously.  相似文献   

19.
A procedure is described for accurate Si isotope ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Dissolved silicon was preconcentrated and separated from other elements present in natural surface waters using anion-exchange chromatography. The optimized procedure provides virtually complete elimination of major inorganic constituents while maintaining Si recovery in excess of 97%. High-resolution capabilities of MC-ICPMS used in this study allow interference-free measurements of 28Si and 29Si isotopes using conventional solution nebulization sample introduction without aerosol desolvation. Owing to the magnitude of polyatomic ion contributions in the region of mass 30, mostly from 14N16O+, measurements of the 30Si isotope can be affected by tailing of the interference signals, making exact matching of analyte and nitric acid concentrations in all measurement solutions mandatory. Isotope abundance ratio measurements were performed using the bracketing standards approach and on-line correction for mass-bias variations using an internal standard (Mg). Uncertainties, expressed as 95% confidence intervals, for replication of the entire procedure are better than +/-0.18/1000 for delta29Si and +/-0.5/1000 for delta30Si. For the first time with MC-ICPMS, the quality of Si isotope abundance ratio measurements could be verified using a three-isotope plot. All samples studied were isotopically heavier than the IRMM-018 Si isotopic reference material.  相似文献   

20.
This work presents the simultaneous online determination of the isotopic composition of different Hg species in a single sample by the hyphenation of gas chromatography (GC) with multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS). With the use of commercially available instrumentation, precise and accurate species-specific Hg isotope delta values (per mil deviation of the Hg isotope ratio in the sample relative to a reference standard) have been obtained online from consecutive GC transient signals. The use of isothermal temperature programs to extend the elution of the Hg species, the proper selection of the peak integration window, as well as the preconcentration of real samples are critical to provide optimal counting statistics. Also, isotope ratio drift during transient signal elution was overcome by introducing a mixed Hg(II) and MeHg standard bracketing scheme and expressing all results using the delta-notation relative to SRM NIST-3133. Using the proposed methodology, we have obtained an external 2SD precision of 0.56 per thousand for delta (202)Hg that is more than 10 times smaller than the overall Hg stable isotope variation thus far observed in terrestrial samples. The measurement of species-specific Hg isotopic composition relative to SRM NIST-3133 has been validated versus two other analytical techniques, i.e., conventional nebulization (CN) of Hg(II) solution and cold vapor (CV) generation of Hg (0) vapor. A good agreement between the species-specific delta values obtained by the different techniques has been obtained in secondary fractionated reference standard (UM-Almaden) and environmental matrixes, i.e., BCR-CRM 464 (tuna fish) and IAEA-085 (human hair). The results show mass-dependent and mass-independent fractionation in environmental samples, i.e., mass-independent fractionation of odd isotopes (199)Hg and (201)Hg in tuna fish was observed. This methodology provides new possibilities for the future study of species-specific stable isotope geochemistry of Hg and other trace metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号