首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
添加剂对煤粉喷枪SHS陶瓷内衬组织和性能的影响   总被引:8,自引:1,他引:7  
采用重力分离SHS法制备了陶瓷内衬煤粉喷枪枪管,试验得出,陶瓷层主要由构成枝晶的αAl2O3基体相和分布于其间的FeO·Al2O3尖晶相所组成,SiO2主要以石英相结构存在于枝晶晶界上;在反应物料中加入适量的SiO2和Cr2O3均可有效地提高内衬陶瓷层的相对密度;SiO2将使陶瓷层的硬度和复合钢管的抗压剪强度降低,Cr2O3却使二者均有所回升;在内衬陶瓷层中分布着径向裂纹和网状裂纹,加入SiO2将减少裂纹密度,Cr2O3却使裂纹密度增加。  相似文献   

2.
SHS离心复合钢管陶瓷内衬的组织结构   总被引:1,自引:0,他引:1  
采用自蔓延高温合成技术离心法制备Al2 O3陶瓷内衬复合钢管。利用扫描电镜及X射线衍射方法对陶瓷内衬的显微组织及物相构成进行了分析。结果表明 ,陶瓷内衬复合钢管由钢管层、金属铁和陶瓷组成的过渡层以及陶瓷层共三层构成 ,其中钢管与铁过渡层之间为机械结合 ,铁过渡层与陶瓷层之间形成冶金结合。陶瓷层组织由垂直管壁生长的α Al2 O3柱状晶和沿其晶间分布的FeO·Al2 O3铁铝尖晶石相以及少量FeO·Al2 O3·SiO2 玻璃相构成 ,玻璃相分布于铁铝尖晶石的晶界并将其包围起来 ,这种结构有利于减轻铁铝尖晶石对复合管内衬抗腐蚀性的不良影响。  相似文献   

3.
本研究针对Fe2O3-Al体系,采用正交试验法研究了复合添加剂中各组分(SiO2,CaF2,CaO,TiO2)对SHS离心法制备陶瓷内衬钢管性能的影响,并对陶瓷层的组织进行了分析。结果表明复合添加剂中SiO2对于陶瓷层的致密化和压溃强度影响程度最高,TiO2对内衬钢管的压剪强度影响程度最高。通过X射线衍射分析,扫描电镜及能谱分析对陶瓷层进行研究。结果显示,陶瓷层主要由Al2O3,FeAl2O4两相组成,Al2O3呈条状分布,少量钙、钛元素固溶于Al2O3和FeAl2O4中。  相似文献   

4.
高家诚  李宁 《功能材料》2012,43(13):1741-1744
采用重力分离SHS制备了钢管内衬Al2O3涂层,进行了力学、抗热震、耐蚀等性能测试,研究了管径、装料密度及不同含量SiO2、CrO3添加剂对涂层组织与性能的影响。研究结果表明,涂层主要物相结构为α-Al2O3+FeAl2O4相,添加剂SiO2和CrO3不改变涂层的主要相组成。反应过程中熔融金属Fe在钢管基体和内衬陶瓷层之间形成了一层金属过渡层。当添加2%SiO2+6%CrO3时,涂层孔隙率最小,硬度最大,抗热震性能最好,耐蚀性也较好,具有良好的综合性能。实验条件下,管径25cm、装料密度1.5g/cm3的内衬涂层硬度为1917HV,孔隙率为9.0%。  相似文献   

5.
SHS陶瓷内衬复合管接合界面结构及力学性能研究   总被引:4,自引:1,他引:4  
崔健  安占军  李育德  孟庆森 《功能材料》2004,35(Z1):3054-3056
基于重力分离自蔓延过程,Al-Fe2O3-CrO3-TiO2-C燃烧体系,制备出了一种新型的FeO-TiC-Al2O3-CrO陶瓷内衬钢管,其内衬陶瓷层厚度均匀、致密、表面光滑.研究表明,加入TiO2、Na2B4O7和石墨后,在陶瓷/金属结合界面形成了Ti、Fe元素的梯度分布,B离子在Al2O3熔体表面的富集,改善了界面结合处Al2O3陶瓷熔体与铁合金过渡层之间的浸润性;双层梯度结构提高了陶瓷/金属界面结合强度,使复合管具有良好的力学性能.  相似文献   

6.
CuO对重力分离SHS陶瓷内衬复合管组织的影响   总被引:3,自引:0,他引:3  
采用重力分离自蔓延高温合成法(Self-propagating High-temperature Synthesis,简称SHS)法,以(Al-Fe2O3-CuO) SiO2复合铝热体系为铝热剂,制备了陶瓷内衬复合管.分析了添加剂CuO对陶瓷层组织的影响.XRD分析表明.陶瓷层主晶相为α-Al2O3、FeAl2O4、Al2SiO5,复合管的中间金属层由α相(Cu在α-Fe中的固溶体)和Cu相组成.CuO作为助燃剂,可提高燃烧速度和燃烧温度并减少陶瓷中FeAl2O4的含量.  相似文献   

7.
基于重力分离SHS法制备陶瓷内衬复合弯管 ,研究了氧化铁粉末化学组成对SHS复合弯管内衬陶瓷的影响 .研究发现在铝热剂相同质量分数条件下 ,存在于工业原料Fe2 O3 粉末的杂质比SiO2 添加剂对燃烧过程的稀释效应更为强烈 .在工业原料Fe2 O3 +Al体系中加入适量的Fe3 O4+Al体系 ,使燃烧温度、蔓延速率及SHS反应转化率均有所升高 ;但加入过量的Fe3 O4+Al体系 ,虽然使蔓延速率进一步增大 ,但却引起燃烧温度和SHS反应转化率有所下降 .实验表明 ,在工业原料Fe2 O3 +Al体系中加入 1 5 %的Fe3 O4+Al体系 ,使复合弯管内衬陶瓷性能达到并超过用分析纯Fe2 O3+Al体系所制备的复合弯管内衬陶瓷性能 .  相似文献   

8.
纳米SiC对重力分离SHS陶瓷内衬复合管组织及性能的影响   总被引:3,自引:1,他引:2  
为提高输送管道陶瓷内衬层的致密性及硬度等性能,拓展其应用,采用重力分离自蔓延高温合成(SHS)法,用(Al-Fe2O3-CuO)+SiO2复合铝热体系,制备了陶瓷内衬复合管.分析了添加剂纳米SiC对陶瓷层组织的影响.XRD分析表明,陶瓷层的主要成分为a-Al2O3,还有少量铁铝尖晶石FeAl2O4和硅线石Al2SiO5及SiC存在,SiC不改变陶瓷层的组织结构.纳米SiC的引入有效地抑制了基质晶粒生长和减轻了晶粒的异常长大,使得陶瓷层的硬度和致密性提高.  相似文献   

9.
用铝热-重力分离法制备了不含铁铝尖晶石(FeAl2O4)的陶瓷内衬复合钢管,并通过热力学计算分析了有关反应的优先顺序,结果表明,在Fe2O3-Al系统中强氧化剂CrO3与Al的反应并不是一步完成而是分步反应,FeAl2O4优先于Cr2O3与Al反应,因而加入CrO3添加剂可有效地去除陶瓷层中的尖晶石相,从而提高复合钢管的耐蚀性能。  相似文献   

10.
用等离子在45#碳钢上喷涂了不同涂层设计的Al2O3以及Al2O3+130mg·g-1TiO2陶瓷层.用X-射线衍射法和拉伸实验测量了涂层表面层中的残余应力及结合强度.增加粘结层和过渡层能大大地克服陶瓷涂层与基材机械的以及热的不匹配性,使涂层的应力和结合强度都得到明显改善.此外,SiO2能改善ZrO2陶瓷层与基材以及陶瓷层内部的结合程度,使涂层内应力松弛并使其结合强度提高.然而SiO2添加剂只有在高熔点陶瓷层中(如ZrO2),"液相烧结"作用才明显,而在熔点较低的陶瓷层中(如Al2O3),这种作用并不明显.在用等离子喷涂低熔点Al2O3陶瓷时,添加适量的低熔点TiO2陶瓷是必要的.  相似文献   

11.
为了提高传统Al_2O_3+40%TiO_2等离子喷涂层的力学性能,将纳米结构的ZrO_2粉末引入热喷涂层,采用液相喷雾造粒的方法将纳米ZrO_2-准微米级Al_2O_3/TiO_2颗粒团聚成适用于等离子喷涂的微米级粉体,并用等离子喷涂技术制备出含有纳米结构的陶瓷涂层.利用X射线衍射仪、扫描电镜和显微硬度计等对涂层的微观结构和性能进行了检测.结果表明,最佳喷涂功率40 kW下制备的纳米陶瓷涂层的显微硬度和韧性比传统涂层有了明显提高.  相似文献   

12.
作为超高温结构材料,共晶氧化物陶瓷的力学性能和显微组织密切相关。采用高温熔凝法制备Al_2O_3/ZrO_2/YAG共晶陶瓷体,研究熔体温度和结晶种子对凝固组织影响规律,运用经典形核机制和Jackson-Hunt共晶生长模型探讨了凝固组织的演变机理。研究表明,随着熔体温度升高(1750~2000℃),凝固体物相组成从α-Al_2O_3,c-ZrO_2和YAG转变为α-Al_2O_3,c-ZrO_2和亚稳相YAP。凝固组织依次经历:非共晶Al_2O_3/ZrO_2/YAG、不规则共晶Al_2O_3/ZrO_2/YAG、纳米纤维状共晶Al_2O_3/ZrO_2/YAG和复杂粗大的亚稳复合陶瓷Al_2O_3/ZrO_2/YAP。分析表明,凝固组织的演变源于异质晶核点不断钝化导致形核过冷度和凝固路径改变,所以合理选择熔体温度和结晶种子是共晶组织调控的关键。  相似文献   

13.
CaO-MgO-Al2O3-SiO2-F系可切削微晶玻璃的晶化机理研究   总被引:3,自引:0,他引:3  
在CaO MgO Al2 O3 SiO2 F系可切削微晶玻璃体系中 ,本研究分析了K2 O和ZrO2 对玻璃析晶和显微结构的影响 ,探讨了晶化机理。K+ 促使云母相的生成和球晶的形成 ;晶化过程中 ,云母和顽辉石互为外延生长 ,使球晶中条状晶解离为片状晶。ZrO2 与F- 一起促使玻璃晶化后形成棒状云母晶粒 ,并具有晶粒长径比大、相互交错的显微结构  相似文献   

14.
The corrosion resistance of SiO2/Al2O3, TiO2/Al2O3 and (SiO2+TiO2)/Al2O3 ceramic composite coatings on Q235 substrate fabricated by means of plasma spraying was investigated. The results show that Al2O3+13 wt pct TiO2 ceramic coating has the highest density, the lowest connected porosity and the best corrosion resistance. The corrosion mechanism of Q235 with ceramic coating has also been studied.  相似文献   

15.
Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. Keywords: High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,  相似文献   

16.
Laser 3D printing based on melt growth has great potential in rapid preparation of Al2O3-based eutectic ceramics.In this work,large-scale Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod with diameter of 4-5 mm and height higher than 250 mm was additively manufactured by laser directed energy deposition.Especially,heat treatment was applied to eliminate the microstructure heterogeneity in the as-deposited eutectic ceramic,and the microstructure homogenization mechanism was studied in depth.The results indicate that colonies and banded structures completely disappear after the heat treatment,producing a homogeneous network eutectic structure.The microstructure homogenization is revealed to experience three stages of discontinuous coarsening,continuous coarsening and microstructure coalescence.Addi-tionally,it is found that the eutectic spacing linearly increases with the heat treatment time,meaning that the coarsening behavior of the laser 3D-printed Al2O3/GdAlO3/ZrO2 eutectic ceramic satisfies well with the Graham-Kraft model.  相似文献   

17.
The corrosion resistance of SiO2/A12O3, TiO2/Al2O3 and (SiO2+TiO2)/Al2O3 ceramic composite coatings on Q235 substrate fabricated by means of plasma spraying was investigated. The results show that A12O3+13 wt pct TiO2 ceramic coating has the highest density, the lowest connected porosity and the best corrosion resistance. The corrosion mechanism of Q235 with ceramic coating has also been studied.  相似文献   

18.
采用宏观和微观分析方法对 90 Al2 O3 缸套内衬的微观结构进行了分析。结果表明 ,该缸套内衬为刚玉 -镁铝尖晶石复合陶瓷 ,显微组织属 Al2 O3 - Mg O- Si O2 和 Al2 O3 - Ca O- Si O2 型结构。二次重结晶和玻璃相的存在及气孔含量偏高 ,将导致韧性降低  相似文献   

19.
陶瓷颗粒增强镍合金复合涂层冲蚀磨损的试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以WC,ZrO2,Cr2O3和Al2O3陶瓷颗粒为增强相,镍合金粉末为基体,运用等离子喷涂技术制备四种陶瓷/镍合金复合涂层。采用冲蚀磨损试验机和正交试验方法,进行陶瓷颗粒相浓度、磨粒粒度、冲蚀角和速度对陶瓷颗粒/镍合金复合涂层抗冲蚀磨损性能影响的试验研究。采用表面形状测量仪对陶瓷颗粒/镍合金复合涂层磨损表面形貌进行测量和分析。试验结果得到WC,ZrO2,Cr2O3和Al2O3四种陶瓷颗粒/镍合金复合涂层冲蚀磨损率的经验关联式。  相似文献   

20.
微波快速烧结ZTA细晶复合陶瓷   总被引:3,自引:0,他引:3  
研究了微波烧结ZrO2增韧Al2O3复合陶瓷(ZTA)的工艺并得到相应的工艺参数;分析ZTA的微观结构,测试了材料的抗弯强度与致密度,并讨论了它们之间的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号