首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
分析传统LDO线性稳压器限流保护电路的优缺点,提出了一种连续可调节的LDO限流保护电路,该电路可根据LDO线性稳压器工作在不同输入-输出电压条件下,调节片外的限流电阻改变极限电流的大小,实现LDO限流保护电路的限流阈值连续可调。采用SMIC 0.18μm CMOS工艺模型进行电路仿真,LDO在1.8~5.0V输入电压下,输出1.2~4.5V范围内,实现了输出电流阈值从143mA到2A的连续可调节的限流保护电路。经过流片测试结果表明,此可调节限流电路简单可行,可适用于各类LDO限流保护电路中。  相似文献   

2.
李娅  石建刚 《微电子学》2014,(4):477-478
设计了一种新颖的LDO限流保护电路。该保护电路结构简单,由5个MOS管构成,其静态电流约200 nA。对该保护电路的原理进行了详细的分析和仿真验证。该LDO采用0.6μm SOI工艺流片,测试结果表明,该LDO具有稳定的限流保护功能。  相似文献   

3.
为了防止因负载短路和过载对芯片造成永久性的伤害,芯片中通常需要加入限流保护电路。文中从限流保护的原理出发,设计了一款用于LDO的折返式(FOLDBACK)限流保护电路。该电路不仅很好地完成了限流保护功能,同时大大降低了芯片的短路功耗。该设计采用0.6μmBiCMOS高压工艺。Hspice仿真结果表明:与常规的恒定电流限制相比,折返式限流电路在限流状态下能使系统的功耗减少70%以上。  相似文献   

4.
提出了一种片上集成的低功耗无电容型LDO(low drop out)电路。该电路采用折叠型cascode运放作为误差放大器,通过消除零点的密勒补偿技术提高了环路稳定性;并在电路中加入了一种新的限流保护结构以保证输出电流过大时对LDO的输出进行保护。此外,在电路中加入了省电模式,可在保持LDO输出1.8 V情况下节省大于70%的功耗。该设计采用HHNEC 0.13μmCMOS工艺,仿真结果显示:在2.5~5.5 V电源供电、各个工艺角及温度变化条件下,LDO输出的线性调整率小于2.3 mV/V,负载调整率小于14μV/mA,温度系数小于27×10-6/℃;在正常工作模式下,整个LDO消耗85μA电流;在省电模式下仅消耗23μA电流。  相似文献   

5.
程晓洁  冯全源   《电子器件》2006,29(4):1075-1077
分析了两种过流保护方法的功能及优缺点,研究并提出了一种可应用于集成稳压器中改善闩锁效应的foldback过流保护电路。通过在一般foldback电路中增加限流功能改变曲线的斜率,避免与负载曲线相交,从而解决稳压器的闩锁问题。在0.6um标准CMOS工艺下,Hspice仿真证明了该电路的可行性和可靠性。  相似文献   

6.
针对LDO稳压器某些情况下输出电压不正常的特点,提出一种除了可监测LDO稳压器的过温过流保护状态以外,还可监测稳压器工作在漏压区状态的故障监测电路,使LDO稳压器的功能更加完善;最后给出了仿真验证结果。  相似文献   

7.
刘雷  罗萍  赵忠  刘俊宏  杨秉中 《微电子学》2021,51(5):636-640
基于0.18 μm BCD工艺,提出了一种外部可调、带限流的折返式LDO过流保护电路。该电路同时具有限流和折返功能。限流部分通过电流镜构成的环路箝位最大输出电流,折返部分通过误差放大器构成的负反馈环路产生与输出电压成比例的电流折返输出电流。与传统过流限结构相比,新结构可降低功耗,保护功率管不被烧毁;与传统折返式结构相比,新结构可通过调节外部电阻方便地调节过流限与折返点电压,避免了稳压器的闩锁现象。在1.2 V典型输出下,LDO电路的仿真验证结果表明,在调节四组不同的外部电阻值条件下,过流限范围为215~350 mA,折返电压范围为450~900 mV,输出短路时,功率管的功耗降至230 mW。  相似文献   

8.
为了减少负载电流瞬态变化对低压差线性稳压器(LDO)输出电压稳定性的不利影响,设计了一种应用于片上系统(SoC)的高稳定性无片外电容LDO稳压器.该电路采用密勒电容倍增补偿和零点-极点跟踪补偿技术,使LDO在不同负载条件下仍具有良好的环路稳定性.同时,通过摆率增强电路来动态调节功率晶体管的栅极电压,改善了LDO的瞬态响...  相似文献   

9.
设计了一种用HHNEC0.35μmBCD工艺实现的LDO线性稳压器,该LDO是一款低功耗,带宽大的低压差线性稳压器。对其结构和工作原理进行分析,讨论了关键电路的设计,模拟结果验证了设计的正确性。  相似文献   

10.
把限流电路添加到功率放大器或线性稳压器的发射极跟随器输出级,就可保护输出晶体管和下游电路免受过大电流的损害。图1示出了经典的限流器电路晶体管Q_2检测  相似文献   

11.
针对负载短路或过载都会对线性稳压器造成性能不稳定或损坏.在限流型保护电路的基础上,采用TSMC0.18μm,设计并验证了一个高可靠性的短路保护电路.该短路保护电路采用电流镜电路按一定比例复制整流管电流,再通过采样电阻转变成相应的电压,最后通过反馈电路实现短路保护功能.ADS仿真结果表明,即使地平面存在大量噪声,只要发生负载短路,就能有效地关断线性稳压器,并可靠地维持其关断的状态.当负栽短路消除后,系统将自动恢复到正常工作状态.  相似文献   

12.
基准模块是LDO线性稳压器的核心部分,它是影响稳压器精度的关键因素之一。本文针对LDO线性稳压器对基准模块一方面有较高的精度要求,另一方面又有较低静态电流要求的矛盾设计了一款简单实用的电压基准电路。仿真结果表明该电路在-40~140℃的温度系数为7.7′10-6℃,低频时的电源抑制比可达-76dB,基准源电路的供电电压范围为2~4.5V。  相似文献   

13.
为了实现LDO的恒定限流、低功率消耗以及高驱动能力,本文提出了一种分段电压折返式限流保护的微功耗LDO。通过限流阈值动态调整,不仅最大限度的增强了LDO驱动能力,而且使限流电路的静态电流仅为300nA。微功耗的高阻抗变换电路拉开了环路的主极点与功率管栅极极点,加上零极点抵消技术综合保证了系统的稳定性。该LDO采用BiCMOS工艺完成流片。测试结果表明,LDO的短路保护电流为190mA,高输入输出压差时的恒定限流440mA,低输入输出压差时的最大驱动电流可达800mA。LDO的静态电流仅为7μA。满量程负载调整率约为0.56%,线性调整率约为0.012%/V,120Hz下的PSRR为58dB,在250mA的负载电流条件下,漏失电压仅为70mV。  相似文献   

14.
利用动态密勒补偿电路解决LDO的稳定性问题   总被引:6,自引:0,他引:6  
针对LDO稳压器的稳定性问题,设计了一种新颖的动态密勒补偿电路。与传统方法相比,该电路具有恒定的带宽,大大提高了系统的瞬态响应性能;同时将开环增益提高了30 dB左右,使LDO稳压器具有较高的电压调整率和负载调整率。通过具体投片,验证了该方法的正确性和可行性。  相似文献   

15.
极点跟随的LDO稳压器频率补偿方法   总被引:1,自引:0,他引:1  
提出了一种新型的用于LDO稳压器的频率补偿方法,并通过动态偏置电压缓冲器进行了电路实现。该方法提供了快速的瞬态响应,且无需芯片上频率补偿电容,提高了芯片的集成度。理论分析与仿真结果表明,LDO稳压器在满负载条件下的频率稳定得到了保证。  相似文献   

16.
高性能低压差线性稳压器的研究与设计   总被引:1,自引:0,他引:1  
吴晓波  李凯  严晓浪 《微电子学》2006,36(3):347-351
为适应低压低功耗应用的需要,提出了一种高性能低压差(LDO)线性稳压器。通过改进稳压器的电路结构和版图设计,引入高精度电路微调技术和完善的过热、过流和过压保护功能,稳压器性能得到了明显的改善。Spectre仿真结果表明,设计构成的LDO输出电流典型值达到3.0 A,最低压差可达1.3 V,电压调整率为0.015%,负载调整率为0.05%。电路的主要性能均已达到设计目标,可在4μm 700 MHz双极工艺下实现。  相似文献   

17.
《电子与封装》2017,(12):38-41
作为新一代集成电路稳压器,LDO以其成本低、噪音低、静态电流小、纹波抑制比高等特点被广泛应用于各种供电系统中。介绍了一款内置独立LDO的马达驱动电路,并通过LDO熔丝的修调介绍了几种常用的熔丝修调方法和注意事项。  相似文献   

18.
电源技术     
《电子设计技术》2007,14(8):159-160,162
提高电路保护可靠性的负载开关;薄型SOT-23封装LDO稳压器;适合手持式设备的低压差线性稳压器。  相似文献   

19.
分析了LDO稳压器的稳定性问题,在此基础上提出了一种新型的动态补偿电路,利用MOS管的开关电阻、寄生电容等构成的电阻电容网络,通过采样负载电流而改变MOS开关管的工作点或工作状态,即改变开关电阻、寄生电容的值,从而实现动态的频率补偿,保证了LDO稳压器的UGF(Unity Frequency)基本不随负载变化,使其在所有负载内均能稳定工作.与传统方法相比,该电路具有恒定的带宽,大大提高了系统的瞬态响应性能,使LDO稳压器具有较高的电压调整率和负载调整率.  相似文献   

20.
王科文 《信息通信》2011,(4):194-195
采用一种用于低压差线性稳压器(LDO)的过流保护设计方案来设计电路,通过"屏蔽电路"屏蔽过流信号,使得LDO不因为过流信号的干扰而中断。在屏蔽期间可以根据电流大小及时调整是否关断功率管,保证了功率管的安全性。使得新型过流保护电路可以更为高效安全的运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号