首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved GaAs MESFET structure, named a buried p-layer lightly doped deep drain (BP-LD3) structure, is proposed. This structure can be fabricated by the conventional self-aligned gate and selective ion implantation technologies, and the FET characteristics show a high transconductance, a high breakdown voltage, and a low drain-source resistance. The lightly doped deep drain characterizing this structure was introduced on the basis of a two-dimensional numerical analysis including an impact ionization for a buried p-layer lightly doped drain (BP-LDD) structure which has been applied for high-speed digital ICs. The simulated results clarified that a low breakdown voltage of the BP-LDD structure originates from a high rate of carrier generation due to the impact ionization in the lightly doped drain region. The reason is that both electric field and current density become high in the region. In the new BP-LD3 structure, the electron current expands due to the deep formation of lightly doped drain, therefore impact ionization is reduced. This BP-LD3 structure was fabricated and the FET characteristics were compared with those of the conventional BP-LDD structure, and a structure which is now being studied for linear amplifiers of 1.9 GHz personal handy-phone systems. The measured breakdown voltage of 8.1 V, transconductance of 360 mS/mm, and drain-source resistance of 2.5 Ω/mm for the BP-LD3 structure indicate high potentiality for analog applications  相似文献   

2.
Frequency dispersions of the transconductance and the drain conductance of ion-implanted gallium arsenide (GaAs) metal-semiconductor field-effect transistors (MESFETs) are measured and analyzed. In the linear region of the MESFET (low drain voltage), a positive transconductance dispersion is observed, which is caused by the deep-level traps at the surface between the source and the gate. In the saturation region (high drain voltage), however, a negative transconductance dispersion becomes dominant. The drain conductance does not show a dispersion in the linear region, while a distinct positive dispersion is observed in the saturation region with the same activation energy as the negative transconductance dispersion. The difference of the dispersion activation energy of the MESFET with and without the p-buried layer beneath the channel indicates that the negative transconductance and the drain conductance dispersion are caused by the deep-level traps at the channel-substrate interface. Because there exists the high electric field at the drain edge of the gate and an electron accumulation layer is formed, the potential in the channel becomes lower when the drain current is larger with high gate voltage. The emission of electrons from electron traps with lower potential is the cause of the negative frequency dispersion.  相似文献   

3.
We report the fabrication and performance of the focused-ion-striped transistor (FIST), which is a GaAs MESFET structure having a channel with stripes of high conductance, going from the source to the drain, separated by regions of semi-insulating material. Calculations show that this structure produces a depletion layer that wraps around the conducting channel stripes and this should result in improved transconductance and output resistance. Experimental results are reported for devices having 1-µm gates and the FIST channels produced by focused-ion-beam implants of silicon with a width of 0.2 µm and a spacing that is varied from 0.2 to 0.5 µm. These verify the basic performance characteristics of the FIST including an increase in stripe transconductance, a two-fold increase in output resistance, and larger values of fTfor small values of Idsnear pinchoff.  相似文献   

4.
A novel SPI (Self-aligned Pocket Implantation) technology has been presented, which improves short channel characteristics without increasing junction capacitance. This technology features a localized pocket implantation using gate electrode and TiSi2 film as self-aligned masks. An epi substrate is used to decrease the surface impurity concentration in the well while maintaining high latch-up immunity. The SPI and the gate to drain overlapped structure such as LATID (Large-Angle-Tilt Implanted Drain) technology allow use of the ultra low impurity concentration in the channel region, resulting in higher saturation drain current at the same gate over-drive compared to conventional device. The carrier velocity reaches 8×106 cm/sec and subthreshold slope is less than 75 mV/dec, which can be explained by low impurity concentration in the channel and in the substrate. The small gate depletion layer capacitance of SPI MOSFET was estimated by C-V measurement, and it can explain high performance such as small subthreshold slope. On the other hand, the problem and the possibility of low supply voltage operation have been discussed, and it has been proposed that small subthreshold slope is prerequisite for low power device operated at low supply voltage. In addition, the drain junction capacitance of SPI is decreased by 65% for N-MOSFET's, and 69% for P-MOSFET's both compared with conventional devices. This technology yields an unloaded CMOS inverter of 48 psec delay time at the supply voltage of 1.5 V  相似文献   

5.
A CMOS device which has an extended heavily-doped amorphous silicon source/drain layer on the field oxide and an amorphous silicon local interconnection (ASLI) layer in the self-aligned source/drain region has been studied. The ASLI layer has some important roles of the local interconnections from the extended source/drain to the bulk source/drain and the path of the dopant diffusion sources to the bulk. The junction depth and the area of the source/drain can be controlled easily by the ASLI layer thickness. The device in this paper not only has very small area of source/drain junctions, but has very shallow junction depths than those of the conventional ones. The electrical characteristics of this device are as good as those of the conventional CMOS device. An operating speed, however, is enhanced significantly compared with the conventional ones, because the junction capacitance of the source/drain is reduced remarkably due to the very small area of source/drain junctions. For a 71-stage unloaded CMOS ring oscillator, 128 ps/gate has been obtained at power supply voltage of 3.3 V. Utilizing this proposed structure, a buried channel PMOS device for the deep submicron regime, known to be difficult to implement, can be fabricated easily.  相似文献   

6.
The nondoped selective epitaxial Si channel technique has been applied to ultrathin gate oxide CMOS transistors. It was confirmed that drain current drive and transconductance are improved in the epitaxial channel MOSFETs with ultrathin gate oxides in the direct-tunneling regime. It was also found that the epitaxial Si channel noticeably reduces the direct-tunneling gate leakage current. The relation between channel impurity concentration and direct-tunneling gate leakage current was investigated in detail. It was confirmed that the lower leakage current in epitaxial channel devices was not completely explained by the lower impurity concentration in the channel. The results suggest that the improved leakage current in the epitaxial channel case is attributable to the improvement of some aspect of the oxide film quality, such as roughness or defect density, and that the improvement of the oxide film quality is essential for ultrathin gate oxide CMOS. AFM and 1/f noise results support that SiO2-Si interface quality in epitaxial Si channel MOSFETs is improved. Good performance and lower leakage current of TiN gate electrode CMOS was also demonstrated  相似文献   

7.
In this article, the characteristics of the GaAs homojunction camel-like gate field-effect transistors with and without the gate-to-source and gate-to-drain recesses structures are first investigated and compared. As to the device without the recesses structure, a second channel within the n +-GaAs cap layer is formed at large gate bias, which could enhance the drain output current and transconductance. Furthermore, a two-stage relationship between drain current (and transconductance) versus gate voltage is observed in the recesses structure. The simulated results exhibit a maximum drain saturation current of 447 (351 mA/mm) and a maximum transconductance of 525 (148 mS/mm) in the studied device without (with) the recesses structure. Consequentially, the demonstration and comparison of the variable structures provide a promise for design in circuit applications.  相似文献   

8.
In this paper a novel device named as SDOV MOSFET is proposed for the first time. This structure features localized void layers under the source and drain regions. The short channel effects of this device can be improved due to the SOI-like source/drain structure. In addition, without the dielectric layer under the channel region, this device can avoid some weaknesses of UTB SOI devices caused by the thin silicon film and the underlying buried oxide, such as mobility degradation, film thickness fluctuation and self-heating effect. Based on self-aligned hydrogen and helium co-implantation technology, the new device can be fabricated by a process compatible with the standard CMOS process. The SDOV MOSFETs with 50 nm gate length are experimentally demonstrated for verification.  相似文献   

9.
提出并制作了一种仅有漏端轻掺杂区的MOSFET新结构──非对称LDD MOSFET。它与通常LDD MOSFET相比,抑制热载流子效应的能力相同,源漏串联电阻降低40%左右,线性区和饱和区的跨导分别增加50%和20%左右。用该器件制作的CMOS电路,其速度性能优于通常LDD MOSFET制作的同样电路。  相似文献   

10.
A systematic investigation of the influences of high substrate doping on the hot carrier characteristics of small geometry n-MOSFETs down to 0.1 /spl mu/m has been carried out. Results indicate that the dependence of substrate current and impact ionization rate on substrate impurity concentration is reversed in long channel and short channel devices. In the long channel case, both increase with rising substrate impurity concentration, while they decrease in the case of short channel devices. An explanation for this phenomenon based on the lucky electron model has been developed. The dependence of other characteristics on impurity concentration has also been studied. The dependence of off-leakage current has been found to fall as the gate oxide is reduced in thickness. Regarding the dependence of hot carrier degradations, the degradation of drain currents becomes smaller as the substrate impurity concentration increases in the case of short channel devices. Further, in the extremely high impurity doping region, a new hot carrier degradation mode was found, in which the maximum transconductance values of n-MOSFETs increase after hot carrier stress. This new degradation mode can be explained in terms of effective channel length shortening caused by electron trapping.<>  相似文献   

11.
We describe a novel silicon-on-insulator metal–semiconductor field-effect transistor with an L-shaped buried oxide (LB-SOI MESFET) and its maximum output power density (Pmax). To optimize the surface electric field and improve the breakdown voltage, we eliminated part of the oxide and replaced it with n-type silicon. By creating an n+–n region on the source side and modifying the electric field distribution, the breakdown voltage improved by 42% compared to a conventional device. Channel control is realized by varying the depletion layer width underneath the metal gate contact. This modulates the thickness of the conducting channel and thus controls the current between the source and the drain. Continuation of the n-type silicon on top of the buried oxide after the gate metal changes the depletion layer and increases the total channel charge for conduction, so the drain current increases by a factor of five compared to a conventional SOI MESFET. In addition, Pmax is increased by a factor of 17.7 with respect to a conventional structure, which is important for large-signal analog applications. Consequently, our novel LB-SOI MESFET has superior electrical characteristics.  相似文献   

12.
提出一种具有埋层低掺杂漏(BLD)SOI高压器件新结构。其机理是埋层附加电场调制耐压层电场,使漂移区电荷共享效应增强,降低沟道边缘电场,在漂移区中部产生新的电场峰。埋层电中性作用增加漂移区优化掺杂浓度,导通电阻降低;低掺杂漏区在漏极附近形成缓冲层,改善漏极击穿特性。借助二维半导体仿真器MEDICI,研究漂移区浓度和厚度对击穿电压的影响,获得改善击穿电压和导通电阻折中关系的途径。在器件参数优化理论的指导下,成功研制了700V的SOI高压器件。结果表明:BLD SOI结构击穿电压由均匀漂移区器件的204V提高到275V,比导通电阻下降25%。  相似文献   

13.
A new recessed-channel SOI (RCSOI) technology has been developed for fabricating ultrathin SOI MOSFET's with low source/drain series resistance. Thin-film fully depleted SOI MOSFET's with channel film thickness of 72 nm have been fabricated with the RCSOI technology. The new structure demonstrated a 70% reduction in source/drain series resistance compared with conventional processes. In the deep-submicron region, more than 80% improvement in saturation drain current and transconductance over conventional devices was achieved using the RCSOI technology. The new technology would also facilitate the use of silicide for further reducing the series resistance  相似文献   

14.
Two of the CMOS device constraints at low temperatures have been identified, namely, the transconductance and the breakdown voltage roll-off. In the short channel devices, the transconductance first increases then decreases with the decreasing temperature. This transconductance roll-off phenomenon is likely caused by the parasitic series resistance in the source and drain regions. The breakdown voltage of the MOSFET's due to the parasitic bipolar transistor action decreases with the decreasing temperature, which is caused by the increase of the impact ionization rate at low temperatures.  相似文献   

15.
The authors have fabricated 0.10-μm gate-length CMOS devices that operate with high speed at room temperature. Electron-beam lithography was used to define 0.10-μm polysilicon gate patterns. Surface-channel type p- and n-channel MOSFETs were fabricated using an LDD structure combined with a self-aligned TiSi2 process. Channel doping was optimized so as to suppress punchthrough as well as to realize high transconductance and low drain junction capacitance. The fabricated 0.10-μm CMOS devices have exhibited high transconductance as well as a well-suppressed band-to-band tunneling current, although the short-channel effect occurred somewhat. The operation of a 0.10-μm gate-length CMOS ring oscillator has been demonstrated. The operation speed was 27.7 ps/gate for 2.5 V at room temperature, which is the fastest CMOS switching ever reported  相似文献   

16.
Fully depleted (FD) silicon-on-insulator (SOI) MOSFET structure with back-gate bias is suggested for high speed and low power consumption for portable communication application. Ni silicide is demonstrated for improving current drivability for low power consumption by reducing series resistance in the source and drain region. Threshold voltage adjustment is also achieved through applied back-gate bias. For the formation of the buried back-gate, the selection of impurity type as well as its doping concentration is controlled. Employing back-gate bias for FD-SOI NMOSFET, improved current drivability with variable threshold voltage is achieved. Short channel devices are fabricated and its electrical characteristics are obtained under various conditions.  相似文献   

17.
The E/D gate MOSFET, which has an enhancement and depletion mode region under the same gate, is fabricated by using ion implantation as a tool for shifting threshold voltage. Threshold voltage, transconductance and drain breakdown voltage are studied as functions of implantation dose up to 12 × 1012 cm?2.It is found that, at an appropriate dose, the transconductance of this device is determined solely by the channel length of the enhancement mode region, and is larger than that of a short channel MOSFET with a standard structure but with the same drain breakdown voltage. Moreover, the dependence of threshold voltage on substrate bias measured in this device is found less sensitive to the transconductance than that in the standard short channel MOSFET.  相似文献   

18.
Results of a two-dimensional finite-element simulation of a GaAs MESFET are presented. The simulation is used to determine the drain current and transconductance as well as the two-dimensional voltage, electron density, and electric-field distributions. It is shown that placement of a compensated doping region in the high electric-field region between gate and drain increases the drain current and transconductance by reducing the velocity-saturation effect. The transconductance and drain conductance of the MESFET in the saturation region of devices having different channel heights are compared with previous analysis.  相似文献   

19.
A brief review of the main physical phenomena involved in the cryogenic operation of CMOS silicon devices down to liquid helium temperature is given. Going from solid state physics towards electrical engineering point of views, several aspects such as the quantification of the inversion layer, the electronic transport in the 2D electron or hole gases, the scattering mechanisms, the impurity freeze-out in the substrate or in the lightly doped source and drain regions, the field-assisted impurity and impact ionization phenomena, the influence of series resistance and other parasitic effects (kink effect, hysteresis, transient, …) which alter the device characteristics will be discussed. The short channel effects such as drain induced barrier lowering, punch through, velocity overshoot will also be addressed.  相似文献   

20.
向兵  武慧微  赵高峰 《半导体技术》2011,36(2):112-115,156
提出一种AlGaAs/GaAs HEMT器件沟道电荷新模型,该模型用一个通用解析函数中系数的不同值来描述二维电子气(2DEG)和AlGaAs层中的电子浓度。在小信号特性上,除考虑了2DEG层外,又在考虑了AlGaAs层、速度饱和、饱和区沟道长度调制效应和源、漏串联电阻RS和RD等效应的基础上,推导出直流特性、跨导、输出电导和栅电容的解析表达式。仿真说明,在较大的栅、漏压范围内,该模型的理论值与实验结果符合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号