首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large-scale reintroduction programs for landlocked Atlantic salmon Salmo salar are ongoing in Lakes Ontario and Champlain. Commonly, these programs involve stocking hatchery reared juveniles into streams and thus, quantifying the in situ habitat use of stocked fish can help support these efforts. To examine habitat use, we stocked young-of-the-year (YOY) Atlantic salmon into 14 reaches of the Boquet River in the Lake Champlain Basin. The habitat used by YOY Atlantic salmon, measured from microhabitats that were used versus not used, differed between early and late summer for water depth. In early summer, YOY Atlantic salmon used a more narrow range of habitats compared to late summer. However, in both early and late summer, YOY most often used intermediate values in habitat variables except for water velocity in early summer. In early summer, YOY Atlantic salmon had the highest probability of using a water depth of 26 cm, a water velocity of 1 cm/sec, and a pebble substrate. In late summer, the probability of use was highest at a water depth of 61 cm, a water velocity of 11 cm/sec, and a pebble substrate. Our results show that stocked landlocked YOY Atlantic salmon use similar habitats to anadromous populations and may help managers when determining stocking locations or habitat alterations.  相似文献   

2.
The effects of trout stock, discharge and predation risk on habitat use by brown trout, Salmo trutta, were studied in four artificial streams. Trout stock had no effect on habitat use as both wild and hatchery fish used similar habitats. The presence of pike (Esox lucius) caused trout to decrease their use of pools, the habitat in which pike occurred, and increase their use of other habitats. Decreasing discharge reduced available area of the stream and resulted in fewer fish in the shallow margins. Both decreased flow and increased predation risk caused more overlap in habitat use, and thus increased the potential for intraspecific competition, predation and the use of poorer habitats. The results illustrate the danger of applying habitat use relationships obtained from one stream to all other streams where habitat availability and biotic interactions may differ.  相似文献   

3.
Habitat use and habitat selection by young Atlantic salmon and brown trout were investigated by direct underwater observation. We sampled during winter and summer water temperatures (low: 3–7°C; high: 9–12°C) coinciding with low and high waterflows (12–20 and 60–80 m3 s?1), and during day and night in winter, and on six selected stations in the river. Observations of 396 salmon and 120 trout indicated a distinct seasonal pattern in behaviours and habitat selection. Feeding was the dominant behaviour at high water temperatures during summer. In winter, there was a diurnal pattern in behaviour; both species sheltered in interstitial spaces in the substrate during daylight, but during night held positions on or close to the substrate in slower flowing stream areas. Coarse substrate providing cover was therefore an important habitat factor during daylight at low water temperatures, while slow‐flowing water was important during night. Although spatial niche overlap was considerable both in summer and winter, salmon and trout segregated with respect to meso‐ and microhabitat selection, and relatively more at low temperatures. Both species changed their use of mesohabitats towards more slow‐flowing glide/flat habitats in winter. Irrespective of season, trout preferred in general more slow‐flowing water than salmon did, but the difference was more pronounced in winter. Salmon used a wider range of water depths and in particular water velocities, than did trout. Both species were less tolerant of high water velocities at low water temperatures. The seasonal and diurnal pattern in habitat selection reported have important implications for habitat research and habitat‐hydraulic modelling. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Groundwater‐dominated streams have particular flow regimes that commonly support populations of trout. Meso‐ and micro‐habitat surveys were carried out on a reach of the river Tern that drains a Triassic sandstone aquifer in the English West Midlands, to investigate brown trout (Salmo trutta) habitat use with varying flows. Mesohabitats were mapped over a range of summer and autumn flows and coupled with direct underwater observation (snorkelling) of fish locations together with point measurements of velocity and depth. The number of habitat types recorded was low and dominated by glides, runs, and backwaters. Brown trout showed a strong association with glides and runs with adults being more associated with runs and parr with glides. General habitat use curves showed brown trout to favour depths between 0.30 and 0.40 m and velocities below 0.40 m s?1. A clear preference was shown for sand and gravel bed materials. However, the differentiation of hydraulic habitats was weak and there was no trend in mesohabitats or change in trout use of mesohabitats with discharge. The study raises limitations of the mesohabitat survey approach when linking fish ecology, flow and physical habitat in small streams with low flow variability and low habitat diversity. In these situations, other factors (especially cover features) appear to strongly influence brown trout distribution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The habitat use and diet of juvenile Atlantic salmon Salmo salar was examined in the South Sandy Creek drainage that discharges into eastern Lake Ontario. Subyearling salmon were stocked in early May during two consecutive years, and habitat and diet evaluations were made in mid-July and mid-October in 2005 and 2006. Both subyearling and yearling Atlantic salmon occupied deeper and faster areas that had more cover and larger sized substrate materials than was present, on average, within the study reach. Differences in habitat use between subyearling and yearling salmon only occurred in summer. Principal component analysis showed that of the habitat variables examined, the amount of cover and size of substrate were more important to juvenile salmon in summer, whereas depth and velocity were more important in the fall. Trichopteran larvae (mainly hydropsychids) dominated the diet of juvenile Atlantic salmon, and parr were feeding most heavily from the substrate as compared to the drift. The juvenile ecology of this re-introduced population of Atlantic salmon is consistent with that reported in other studies throughout the species native range.  相似文献   

6.
Temperature may influence interactions between species by regulating energy balances of individuals. We conducted a laboratory study to determine whether temperature influenced the effects exerted by large rainbow trout on the growth of Atlantic salmon parr. Bioenergetic models were used to predict maintenance rations so that food resources were limiting over a range of temperatures; equal biomasses of rainbow trout were substituted for Atlantic salmon to evaluate the relative effect of interspecific interactions on Atlantic salmon growth. In the presence of rainbow trout, salmon growth increased as temperatures increased from 15°C to 25°C; no such temperature effect occurred for salmon maintained alone. Growth differences between salmon maintained with and without trout were highly significant at 25°C but not at 15°C. We conclude that the presence of trout depressed salmon growth at 15°C but not at higher temperatures, most likely a result of differences in thermal optima between these two species. Field data show that the proportion of stocked Atlantic salmon to wild rainbow trout coexisting in natural streams is a function of mean summer temperature. As stream temperatures increased, Atlantic salmon became increasingly favored over rainbow trout, but with a concomitant decrease in total salmonine biomass. We suggest that Atlantic salmon restoration programs focus more attention on relatively warm streams in watersheds where interactions with naturalized rainbow trout may occur.  相似文献   

7.
Two morphologically distinct moss communities were found in the River Suldalslågen. The liver moss community consists of species which form a dense mat on the bottom, while the river moss (Fontinalis) community forms long tufts. Moss growth has increased since hydropower regulations due to reduced floods and increased winter flows. Increased moss cover affects the bottom structure, as well as intra‐gravel and near‐bottom hydraulics. We studied densities of juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) by electrofishing and habitat selection by direct underwater observation, in areas with natural moss cover compared with areas where mosses were experimentally removed. Areas with dense mats of liver mosses held lower densities of young of year (YoY) and older salmon parr than areas where liver moss had been removed. No differences in densities of YoY salmon were found between areas with and without Fontinalis. For older salmon, parr results were inconclusive. In some samples more and in others fewer fish were found in areas with Fontinalis moss removed. For trout, densities were higher in areas with Fontinalis, while results for liver moss were inconclusive. No major differences were found with regard to microhabitat selection between areas with and without river moss, suggesting that habitat quality in these areas was similar during summer, except with respect to substrate. Salmon held more exposed positions in areas without liver moss, but this is mainly attributed to different habitat availabilities. It is concluded that the relative increase in liver mosses in the River Suldalslågen has a negative impact on juvenile Atlantic salmon fish density. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Anthropogenic influences, including climate change, are increasing river temperatures in northern and temperate regions and threatening the thermal habitats of native salmonids. When river temperatures exceed the tolerance levels of brook trout and Atlantic salmon, individuals exhibit behavioural thermoregulation by seeking out cold‐water refugia – often created by tributaries and groundwater discharge. Thermal infrared (TIR) imagery was used to map cold‐water anomalies along a 53 km reach of the Cains River, New Brunswick. Trout and salmon parr did not use all identified thermal anomalies as refugia during higher river temperature periods (>21°C). Most small‐bodied trout (8–30 cm) were observed in 80% of the thermal anomalies sampled. Large‐bodied trout (>35 cm) required a more specific set of physical habitat conditions for suitable refugia, that is, 100% of observed large trout used 30% of the anomalies sampled and required water depths >65 cm within or adjacent to the anomaly. Densities of trout were significantly higher within anomalies compared with areas of ambient river temperature. Salmon parr were less aligned with thermal anomalies at the observed temperatures, that is, 59% were found in 65% of the sampled anomalies; and densities were not significantly different within/ outside anomalies. Salmon parr appeared to aggregate at 27°C, and after several events over 27°C variability in aggregation behaviour was observed – some fish aggregated at 25°C, others did not. We stipulate this is due to variances of thermal fatigue. Habitat suitability curves were developed for velocity, temperature, depth, substrate, and deep water availability to characterize conditions preferred by fish during high‐temperature events. These findings are useful for managers as our climate warms, and can potentially be used as a tool to help conserve and enhance thermal refugia for brook trout and Atlantic salmon in similar systems.  相似文献   

9.
The lowermost 20 km of the River Surna, northwestern Norway receives cool water during summer from a hypolimnetic release mountain reservoir. In this part of the river, yearlings of both Atlantic salmon and brown trout are significantly smaller compared with those in the upper section of the river, which is unaffected by the cold water release. The slower growth below the power station causes both Atlantic salmon and anadromous brown trout to smoltify one year later compared with fish in the upper section of the river. This leads to higher mortality and therefore lower production of both adult salmon and trout.  相似文献   

10.
In‐stream habitat enhancement is a common remedial action in rivers where degradation/lack of suitable fish habitat can be diagnosed. However, post‐project monitoring to assess the response of the biota to modification is rare particularly during winter. We conducted in situ monitoring during the winters of 2004–2006 in the regulated Dalåa River, central Norway, in order to determine if winter habitat requirements of Atlantic salmon (Salmo salar L.) parr were realized in an enhanced (substrate and mesohabitat modification) reach. In total, 140 parr were marked with passive integrated transponder (PIT) tags and the fish were followed by carrying out active tracking surveys under variable ice conditions throughout the winter. Highest emigration (44%) occurred before ice formation started. Emigration was reduced after ice formed and was largely offset by parr re‐entering the enhanced area. Dispersal into the non‐enhanced, small substrate control area was observed only when the study reach was ice covered, and no parr were subsequently encountered in the control section after ice had melted. In the enhanced area, declining water temperature and surface ice conditions did not affect the spatial distribution of the resident salmon parr at the studied scale. Areas with ‘solid’ anchor ice precluded access for salmon parr whilst areas with ‘patchy’ anchor were used throughout the winter. Our results indicate that surface ice creates conditions that allow salmon parr to use stream habitats that otherwise provide only a limited amount of in‐stream cover. Ice processes should be taken into consideration when habitat enhancement projects are carried out and subsequently assessed for effectiveness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The habitat use, diet composition, and feeding periodicity of subyearling Atlantic salmon (Salmo salar) was examined during both day and night periods during summer in tributaries of Lake Ontario. The amount of cover used was the major habitat variable that differed between day and night periods in both streams. At night subyearling Atlantic salmon were associated with significantly less cover than during the day. Principal Component Analysis showed that habitat selection of subyearling Atlantic salmon was more pronounced during the day in both streams and that salmon in Orwell Brook exhibited more diel variability in habitat use than salmon in Trout Brook. Subyearling salmon fed primarily from the benthic substrate on baetids, chironomids, and leptocerids. There was a substantial amount of diel variation in diet composition with peak feeding occurring from 0400 h to 0800 h on July 21–22, 2008.  相似文献   

12.
We describe patterns of emergence and downstream movement by recently emerged fry of two non-native salmonids in the Great Lakes region, North America. Our primary objectives were to describe the timing of emergence in relation to spring flooding, and to examine the effects of reach-level complexity of stream habitat on rates of movement. Emergence and movement patterns of coho salmon and brown trout fry were assessed over an eight-week period in two reaches distinguished by differences in channel woody debris. Fry emergence occurred from mid-March to early May, and peaked in early to mid-April. Movement during this period was uncorrelated with upstream densities of resident fry and fish moving downstream did not appear moribund or in poor condition. Nearly twice as many fish moved through the simple reach that lacked woody debris cover even though upstream densities of resident fry were generally greater in the complex reach. The results reported here indicate that peak emergence occurs in close association with the timing of spring floods. Variability in the timing of either emergence or spring floods could have profound effects on the size of coho salmon and brown trout populations within streams of this region. Results from this study further suggest that greater habitat complexity may reduce downstream movements of newly emerged salmonid fry in a natural system.  相似文献   

13.
We constructed energetic models of habitat use for 82–322 g rainbow trout (Oncorhynchus mykiss) in a large regulated river, and 8–28 g Colorado River cutthroat trout (O. clarki pleuriticus) in a small headwater stream, to determine if observed summer habitat use by these species could be attributed to net energy acquisition, and to develop habitat suitability criteria based on net energy gain. Metabolic models of energy expenditure were derived from literature sources, but measurements of energy availability were site-specific. From the energy models, we assigned a suitability value of 1.0 to the entire range of velocities where positive net energy gains were predicted, and a suitability value of zero to velocities where negative net energy gains were predicted. Predicted net energy gain velocities were compared with observed velocities used by each species. For rainbow trout, the energetic model predicted energetically profitable velocities ranging from 5 to 45 cm s−1. Predicted velocities were similar to velocities used by rainbow trout. This indicated that rainbow trout, as a group, were using energetically profitable stream locations, but some rainbow trout used non-profitable velocities. For Colorado River cutthroat trout, the energetic model predicted energetically profitable velocities ranging from 5 to 45 cm s−1; however, Colorado River cutthroat trout used significantly lower velocities than predicted. The dissimilarity between velocities predicted and used by Colorado River cutthroat trout may be attributed to their inability to utilize energetically profitable velocities available in the stream because of depth restrictions The results suggest that the predictive abilities of energetic models vary between streams because of differences in depth and velocity availability. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Large woody debris was explored as a method of restructuring channelized streams to improve salmonid habitat. Whole trees were inserted in sections along a 2 km reach of a channelized stream to determine if large woody debris: (1) increased the abundance and biomass of brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss); (2) had an effect on physical habitat features; and (3) provided trouts with additional habitat. Trout populations and stream morphology were monitored before and after the introduction of woody debris and compared to control sections lacking woody debris. Abundance and biomass of both brown and rainbow trout increased in the treatment section compared to the control. Maximum and standard deviation of fish total length increased in all sections during summer months. The number of individuals and the standard deviations of total lengths decreased in the control section in winter, but increased in the treatment section. Mean water velocities decreased and number and volume of pools increased in treatment sections. Brown and rainbow trouts sought woody debris structures for cover. We conclude that large woody debris can serve as a method of reconstructing channelized streams to improve salmonid habitat. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Suitable thermal conditions in streams are necessary for fish and predictions of future climate changes infer that water temperatures may regularly exceed tolerable ranges for key species. Riparian woodland is considered as a possible management tool for moderating future thermal conditions in streams for the benefit of fish communities. The spatial and temporal variation of stream water temperature was therefore investigated over 3 years in lowland rivers in the New Forest (southern England) to establish the suitability of the thermal regime for fish in relation to riparian shade in a warm water system. Riparian shade was found to have a marked influence on stream water temperature, particularly in terms of moderating diel temperature variation and limiting the number of days per year that maximum temperatures exceeded published thermal thresholds for brown trout. Expansion of riparian woodland offers potential to prevent water temperature exceeding incipient lethal limits for brown trout and other fish species. A relatively low level of shade (20–40%) was found to be effective in keeping summer temperatures below the incipient lethal limit for brown trout, but ca. 80% shade generally prevented water temperatures exceeding the range reported for optimum growth of brown trout. Higher levels of shade are likely to be necessary to protect temperature‐sensitive species from climate warming. © Crown copyright 2010.  相似文献   

16.
Transfers of water from the Kielder system have been used for 12 years to avoid low flow problems in the River Wear. Transfers are scheduled to avoid breaches of the river's statutory Minimum Maintained Flow (MMF). Despite this routine use, the role of transfers in augmenting instream habitat has never been evaluated. A physical habitat simulation (PHABSIM) study was undertaken in 1996 to investigate the influence of transfers and the MMF policy on brown trout Salmo trutta, Atlantic salmon Salmo salar and grayling Thymallus thymallus instream habitat at three sites on the Wear. Transfers support total habitat levels up to 10% greater than unregulated conditions. They impact usable instream habitat (weighted usable area) to a much greater extent. For salmon parr, the species/lifestage whose habitat is most limited by low flows, transfers have maintained relatively stable usable habitat levels during periods when otherwise they would have fallen by as much as 70%. The MMF policy results in minimum flow values which are higher than those which would have been set using the Montana Method and the availability of salmon parr usable habitat does not fall below 10% of its mean annual value. Judged in these terms, the MMF-based transfer regime has played a positive role in avoiding extreme habitat loss in the Wear. Simulations of four alternative Kielder transfer release policies indicate that near-optimum habitat levels could be maintained throughout summer low flow periods. However, this would result in unnatural temporal patterns of flow and habitat availability. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Generalized habitat criteria for spawning sites of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) using depth, water velocity and substrate size were created based on published information. In addition, information on critical intragravel conditions for egg development was summarized. Salmon spawned mostly in relatively deep, swift‐velocity habitats (20–50 cm, 35–65 cm s?1), whereas trout selected slightly shallower and slower flowing spawning sites (15–45 cm, 20–55 cm s?1). Salmon and trout preferred pebbles (16–64 mm) for spawning. The minimum oxygen concentration for successful incubation of eggs varies with the developmental stage of eggs, and supply of it may be reduced by deposited fine sediment. Habitat criteria for spawning sites are narrower than those for small juveniles; therefore the use of separate criteria is recommended. In addition to the traditional habitat criteria variables (depth, water velocity, substrate), the critical intragravel factors affecting egg survival should be incorporated in biologically meaningful criteria for spawning habitat modelling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Radiotelemetry was used to investigate detailed movement and summer habitat of brown trout Salmo trutta (size range 157–488 mm TL, n=18) in the Kananaskis River, Alberta. Flows in the Kananaskis River respond to pulsed daily discharge from an upstream hydroelectric generating facility (range 0.15–25 m3 s−1). Wetted area available for brown trout doubled during periods of high flow. Fluctuating river levels did not appear to influence the degree to which brown trout moved within the study site. However, there was evidence that brown trout used cover and pools more as discharge increased. During high flow conditions, brown trout used similar depths (63 cm), and significantly lower surface water velocities than during low flow conditions. Brown trout also moved closer to shore into interstitial spaces among woody debris and root complexes during high flow. Pool habitats were used most often compared with all other habitat types combined. Pools with large woody debris accounted for 75% of all habitat observations. Woody debris was used more often than all other cover types. Results of the study indicate that the effects of river regulation on brown trout appear to have been moderated by woody debris in pools and along river banks, which provided refuge from high water velocities during periods of high flow. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Economically and culturally important salmonid species often compete with Atlantic salmon (Salmo salar) released from stocking programs or that escaped during aquaculture production. Such competitive interactions may lower the individual fitness of these species by reducing survival and body growth. Here, we exposed juvenile brown trout (S. trutta), rainbow trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) to juvenile Atlantic salmon in artificial streams for 10 months. Survival and fitness-related traits of the four species were not negatively impacted by the presence of Atlantic salmon. The results suggest that brown trout and rainbow trout have better competitive abilities than Atlantic salmon, and that Chinook salmon and coho salmon have limited competitive interactions with Atlantic salmon. Although we discuss certain environmental conditions that can favor Atlantic salmon as a competitor at the juvenile life stage, Atlantic salmon may have little impact on the productivity of these four species.  相似文献   

20.
We examined the relationship between the physical environment and habitat use of juvenile masu salmon, Oncorhynchus masou, in the Nobori River in Hokkaido, Japan to provide a perspective for the conservation of fish habitat in regulated streams. The study was undertaken during the autumn and winter, with an emphasis on the hierarchy of three spatial scales: microhabitat, channel‐unit and reach scales. The microhabitat‐scale analysis indicated juvenile masu salmon preferred a midstream habitat type, with a greater depth (Avg. ± SD: 35.4 ± 14.2 cm) and high (43.4 ± 23.1 cm s?1) and uniform current velocities during the autumn, and a channel margin habitat type with a moderate current (about 20 cm s?1) and submerged cover during winter. In addition, different cover types have different roles in determining juvenile salmon distributions during winter. Grass cover had extremely high carrying capacities, whereas coarse substrate cover provided winter habitat for larger juvenile salmon. Channel‐unit scale analyses showed that abundance of juvenile salmon tended to be higher in pools than runs in the autumn through winter. Reach‐scale analysis showed that abundance and mean body length of juvenile salmon significantly differed between differently regulated reaches during winter, associated with the dominant cover type in each reach. This study demonstrated that the habitat conditions determining juvenile masu salmon distribution differ according to the season and scale of analysis. Therefore, for conservation of fish communities, it is important to evaluate and conserve or create fish habitats in regulated reaches, with a focus on the hierarchy of spatial scales and seasonal differences. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号