首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study has been made of different preparation techniques used for the scanning electron microscope (SEM), with regard to their application to fungus-nematode interaction. The preparation of frozen-hydrated specimens of both healthy and Arthrobotrys-oli-gospora-infected second-stage larvae of the root-knot nematode (Meloidogyne sp.) is described, and the results are compared with those obtained by critical point-drying and freeze-drying. In all cases the frozen-hydrated specimens consistently showed the best preservation.  相似文献   

2.
A technique is described for the 3-D reconstruction from serial optical sections of the traps and invasive hyphae of the nematophagous fungus Arthrobotrys oligospora, using differential interference contrast optics and 3-D acquisition and reconstruction programs on an Apple Macintosh microcomputer. The technique preserves the true morphology of the trap, enables its complex arrangement to be correctly interpreted, is non-destructive and uses relatively inexpensive hardware.  相似文献   

3.
Internal viewing of the cellular organization of hyphae by scanning electron microscopy is an alternative to observing sectioned fungal material with a transmission electron microscope. To study cytoplasmic organelles in the hyphal cells of fungi by SEM, colonies were chemically fixed with glutaraldehyde and osmium tetroxide and then immersed in dimethyl sulfoxide. Following this procedure, the colonies were frozen and fractured on a liquid nitrogen-precooled metal block. Next, the fractured samples were macerated in diluted osmium tetroxide to remove the cytoplasmic matrix and subsequently dehydrated by freeze substitution in methanol. After critical point drying, mounting, and sputter coating, fractured cells of several basidiomycetes were imaged with field-emission SEM. This procedure produced clear images of elongated and spherical mitochondria, the nucleus, intravacuolar structures, tubular- and plate-like endoplasmic reticulum, and different types of septal pore caps. This method is a powerful approach for studying the intracellular ultrastructure of fungi by SEM.  相似文献   

4.
Critical-point drying and freeze drying were compared both quantitatively and qualitatively as preparative procedures for scanning electron microscopy. Isolated hepatocytes were used as model cells. Nomarski differential interference contrast microscopy was used for light microscopic measurements of the hepatocytes in the unfixed, the glutaraldehyde fixed, the glutaraldehyde + OsO4 fixed, the critical-point dried and the freeze dried states. Critical-point dried hepatocytes were found to shrink to 38% of glutaraldehyde + OsO4 fixed volume, whereas optimal freeze dried hepatocytes (frozen in water saturated with chloroform and freeze dried at 183 K for 84 h) were found to shrink to 51% of glutaraldehyde + OsO4 fixed volume. Transmission and scanning electron micrographs of the critical-point dried cells showed well-preserved ultrastructure and surface structure. Micrographs of the freeze dried cells showed ultrastructure destroyed by internal ice crystals and surface structure destroyed by external ice crystals. Double-fixed isolated hepatocytes were shown to swell during storage in buffer and to shrink during storage after critical-point drying. For low magnification scanning electron microscopy (up to about 3000 times) both critical-point drying and freeze drying can be used. However, for high magnification scanning electron microscopy, critical-point drying is superior to freeze drying.  相似文献   

5.
The effect of different substitution times, temperatures and the incorporation of fixatives on the preservation of three species of nematode for scanning electron microscopy by freeze substitution with methanol, followed by critical point drying, is investigated. Hammerschmidtiella diesingi adults and Trichostrongylus colubriformis infective juveniles were successfully preserved using methanol at 253 K as the substitution medium. Preservation deteriorated with long substitution times, suggesting the extraction of material and that substitution times should be kept as brief as possible. Panagrolaimus davidi was not successfully preserved using pure methanol, but preservation was improved by using fixatives in the substitution medium, the best results being obtained with 1% OsO4/3% glutaraldehyde in methanol. A substitution temperature of 193 K did not give any improvement in preservation. The differences in the quality of preservation between the three species may be due to the relative ability of the cuticle to withstand collapse during critical point drying. Chemical fixation using cold fixative resulted in the retention of a natural posture but poor preservation, whereas hot fixatives resulted in good preservation but the loss of a natural posture. Freeze substitution in methanol may prove useful in the preparation of specimens possessing cuticles or cell walls which have sufficient strength to withstand the drying process (e.g. arthropods, plants, fungi, nematodes). More delicate specimens may require the incorporation of fixatives into the substitution medium or conventional fixation.  相似文献   

6.
本文介绍了制备透射电镜生物样品冷冻置换技术的基本方法及其优点。  相似文献   

7.
A consortium of microorganisms with the capacity to degrade crude oil has been characterized by means of confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The analysis using CLSM shows that Microcoleus chthonoplastes is the dominant organism in the consortium. This cyanobacterium forms long filaments that group together in bundles inside a mucopolysaccharide sheath. Scanning electron microscopy and transmission electron microscopy have allowed us to demonstrate that this cyanobacterium forms a consortium primarily with three morphotypes of the heterotrophic microorganisms found in the Microcoleus chthonoplastes sheath. The optimal growth of Microcoleus consortium was obtained in presence of light and crude oil, and under anaerobic conditions. When grown in agar plate, only one type of colony (green and filamentous) was observed.  相似文献   

8.
Cryopreservation is the superior technique for viewing leaf surfaces in the SEM. Epidermal cells become distorted when freeze dried and disrupt the orientation of epicuticular wax structures. The latter are largely lost during critical point drying. Nevertheless, the appearance of surface structures after subjecting them to each drying method is valuable in interpreting the features observed by cryopreservation.  相似文献   

9.
A new infiltration method was developed for preparation of wood tissues for transmission electron microscopy (TEM) using freeze substitution. The method included treatment of freeze-substituted samples with sodium phosphate buffer before infiltration with epoxy resin. Samples from red osier (Cornus sericea L.) and flowering dogwood (C. florida L.) were studied to assess the quality of the infiltration method. The method produced well-embedded samples with good trimming and cutting qualities. To our knowledge, this is the first report on preparation of wood tissues for TEM using freeze substitution.  相似文献   

10.
A novel secondary electron detection system combining a two‐stage detector head and a differential pumping system is presented. The detector head consisted of a scintillation Everhart‐Thornley detector and a microsphere plate, separating it from the lower vacuum in the intermediate chamber (below 0.1 mbar). The system was arranged asymmetrically, which should contribute to a lower gas leakage through the plate and a longer life span of the plate. The system offered all the advantages of the scintillator detector in a wide range of gas pressures, from high vacuum to those of the order of 10 mbar, typical of high‐pressure scanning electron microscopy.  相似文献   

11.
Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin m et al coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the “flower-like” structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.  相似文献   

12.
Rouse JH  White ST  Ferguson GS 《Scanning》2004,26(3):131-134
A method for preparing and observing clay platelets for size and shape analysis using scanning electron microscopy (SEM) was developed. Samples of the clay platelets were prepared by polyelectrolyte-assisted adsorption onto a pyrolytic graphite surface. The use of graphite as a substrate was advantageous because of the low number of secondary electrons emitted from it during imaging by SEM. The resulting low background noise allowed the emission from the approximately 1 nm thick clay sheets to be clearly visualized. Images of centrifuged montmorillonite showed large exfoliated platelets with lateral dimensions between 200 and 600 nm. In contrast, uncentrifuged montmorillonite appeared to contain a large amount of unexfoliated clusters. Although it was not possible to obtain high-quality images of the smaller sheets of Laponite RD, the images of this material did contain size features comparable to the approximately 30 nm2 size reported previously using light scattering, as well as transmission electron and atomic force microscopies.  相似文献   

13.
14.
This study has investigated the potential of environmental electron microscopy techniques for studying the structure of polymer‐based electronic devices. Polymer blend systems composed of F8BT and PFB were examined. Excellent contrast, both topographical and compositional, can be achieved using both conventional environmental scanning electron microscopy (ESEM) and a transmission detector giving an environmental scanning transmission electron microscope (ESTEM) configuration. Controllable charging effects present in the ESEM were observed, giving rise to a novel voltage contrast. This shows the potential of such contrast to provide excellent images of phase structure and charge distributions.  相似文献   

15.
16.
Tai SS  Tang XM 《Scanning》2001,23(4):267-272
Biological samples having different characteristics were observed by environmental scanning electron microscopy (ESEM). The environmental conditions for untreated biological samples was determined by optimizing sample temperature and chamber pressure. When the temperature was at 4 degrees - 6 degrees C and chamber pressure was 5.2-5.9 Torr, the relative humidity in the specimen chamber was about 85%. Under these conditions, the surface features of the sample were completely exposed and did not exhibit charging. The images obtained from the untreated samples at different ESEM conditions were also compared with fixed and coated samples observed under high vacuum.  相似文献   

17.
Rusts comprises the largest natural group of plant pathogens including approximately 8% of all described Fungi. Rust fungi are extremely plant pathogens responsible for great losses to agriculture productivity. Rust species belong to several genera among which more than half are Puccinia species. In Pakistan, rust causes severe damage to agriculture crops. Current study was carried out to identify and characterize different rust species common in the research area through microscopy and Scanning electron microscopy (SEM) in Khyber Pakhtunkhwa, Pakistan. Morpho-anatomical investigation of each collected rust species was carried out using different standard protocols. The dimensions of spores were measured and snapped under a stereomicroscope. SEM was used to examine the shape, size, and ornamentation of the spores of each rust fungus. Results revealed documentation of seven rust fungi, that is, Melampsora euphorbiae, Phragmidium barclayi, Puccinia nepalensis, P. exhausta, P. menthae, Uromyces capitatus, and Uromyces decorates belong to four different genera, were recorded. SEM revealed that spermogonia and Aecia were missing in most of the rust fungus studied. Uredinia was found in a scattered, irregular, lengthy, and epidermis-enclosed form. Urediniospores were found to be ovulating, elongated, echinulate, globose to sub-globose, ellipsoid to ovoid, and globose to sub-globose. Telia was found as sub-epidermal, amphigenous, dispersed, minute, and spherical cells. Teliospores ranged in form from cylindrical to oblong. The germ pores were detected in both apical (top cell) and basal (bottom cell) idiosyncratic and pedicel-attached cells. The techniques used in the current investigation will aid mycologists in rust identification and microscopic characterization.  相似文献   

18.
We present the data obtained by scanning tunnelling microscopy combined with scanning electron microscopy of the digitally encoded structure on a stamper used to fabricate optical discs. The combination allows us to focus the STM tip on a preselected spot with a precision of ?0·3 μm. The data show the superiority of STM for a more detailed characterization of shape, width, length, height and fine structure appearing on the sample. We also show the influence of tip shape on STM resolution. Simultaneous use of both microscopes is possible but high electron doses produce an insulating layer of contaminants thick enough to make STM operation impossible.  相似文献   

19.
Case studies will be presented in which environmental scanning electron microscopy (ESEM) has been used to provide unique insight into the role of microorganisms in deterioration processes. ESEM is an excellent tool for demonstrating spatial relationships between microorganisms and substrata because hydrated, nonconducting samples can be viewed with a minimum of manipulation. Copper and iron-rich deposits associated with bacteria were detected within corrosion layers on copper and steel surfaces, respectively. Fungal mycelia growing on wooden storage spools were shown to penetrate protective grease on carbon steel wire rope in contact with the spool and to cause localized corrosion. Large numbers of marine bacteria were documented within paint blisters and disbonded regions of fiber-reinforced polymeric composites. In both cases, it appears that microbial gas production resulted in mechanical damage to the substrata.  相似文献   

20.
James A. Poston 《Scanning》1995,17(5):316-321
Relatively low-cost modifications to standard commercial scanning electron microscopes (SEM) that allow accurate exposure of sample(s) to noncorrosive gases at ambient and high temperatures are outlined. Energy-dispersive spectroscopic analysis of sample(s) exposed to noncorrosive gases at high temperatures is demonstrated. Gas exposure is limited to pressures of less than 10?4 torr (1.33 × 10?2 Pa) as a result of limitations on SEM system operation and SEM safety interlocks. Gases are limited to noncorrosive types as a result of potential damage to system detection devices and internal mechanical parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号