首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Modified gold impregnation is one of the methods that are used in light microscopical demonstration of hepatic perisinusoidal cells. This method has some disadvantages, such as restriction of fixation time to 16 h, which allows limited time for processing the tissues, especially when dealing with a large amount of material, and a long impregnation time (16–24 h). We investigated the effect of prolonged fixation on the staining of sections, to shorten the time needed for gold impregnation by using microwave irradiation. Liver specimens were fixed in Baker's calcium–formalin for different periods of time. After fixation, frozen sections were impregnated in gold chloride solution either at room temperature or in a microwave oven. The staining quality of the sections which had been impregnated in the microwave oven for a much shorter time were equal to or even superior to the ones impregnated at room temperature. Prolonging the fixation time up to 7 days did not affect the staining results by microwave irradiation, whereas satisfactory results were not obtained from sections stained at room temperature and fixed for more than 3 days. We conclude that microwave irradiation can be used to shorten the impregnation time in gold chloride solution and the duration of fixation can be prolonged up to 3 days in the original method and up to 7 days when microwave irradiation is used during impregnation.  相似文献   

3.
The contribution of glutaraldehyde (GA) to the effective osmolarity of GA fixatives, the osmotic reactivity of the cells after fixation in GA, and also the duration of fixation in GA on cell volume, were investigated using cultured smooth muscle cells (SMC) and spiral aortic strips. Four fixation procedures were studied. We found that GA contributes to the total effective osmolarity of the fixatives, and that the type of buffers used for the fixatives can also affect the cell volume differently during GA fixation. After GA fixation, the cells were still osmotically reactive, regardless of the buffer types for making up the GA fixatives, so that the osmolarity of the wash buffer after GA fixation is important. However, OsO4 eliminates osmotic responses, thus the osmolarity of OsO4 fixative and wash buffer have negligible influence on the cell volume. Longer fixation time up to 4 h had no effect on the cell volume.  相似文献   

4.
Cryoimmobilization is regarded as the most reliable method to preserve cellular ultrastructure for electron microscopic analysis, because it is both fast (milliseconds) and avoids the use of harmful chemicals on living cells. For immunolabelling studies samples have to be dehydrated by freeze‐substitution and embedded in a resin. Strangely, although most of the lipids are maintained, intracellular membranes such as endoplasmic reticulum, Golgi and mitochondrial membranes are often poorly contrasted and hardly visible. By contrast, Tokuyasu cryosectioning, based on chemical fixation with aldehydes is the best established and generally most efficient method for localization of proteins by immunogold labelling. Despite the invasive character of the aldehyde fixation, the Tokuyasu method yields a reasonably good ultrastructural preservation in combination with excellent membrane contrast. In some cases, however, dramatic differences in cellular ultrastructure, especially of membranous structures, could be revealed by comparison of the chemical with the cryofixation method. To make use of the advantages of the two different approaches a more general and quantitative knowledge of the influence of aldehyde fixation on ultrastructure is needed. Therefore, we have measured the size and shape of endosomes and lysosomes in high‐pressure frozen and aldehyde‐fixed cells and found that aldehyde fixation causes a significant deformation and reduction of endosomal volume without affecting the membrane length. There was no considerable influence on the lysosomes. Ultrastructural changes caused by aldehyde fixation are most dramatic for endosomes with tubular extensions, as could be visualized with electron tomography. The implications for the interpretation of immunogold localization studies on chemically fixed cells are discussed.  相似文献   

5.
The change in volume of cultured smooth muscle cells prepared with four different fixation procedures for transmission electron microscopy was studied. Although the cells showed swelling after being embedded in Spurr's embedding medium, the degree of swelling depended on the particular method of fixation procedure used. When the volume of the cells measured using transmission electron microscopy was compared with that of the fresh cell volume, cells prepared by two of the methods showed swelling, and cellular shrinkage was noted in the other two methods. One method which caused the least amount of volume change is recommended for quantitative electron microscopic study of vertebrate smooth muscle cell systems.  相似文献   

6.
Fixation of biological samples is an important process especially related to histological and ultrastructural studies. Chemical fixation was the primary method of fixing tissue for transmission electron microscopy for many years, as it provides adequate preservation of the morphology of cells and organelles. High pressure freezing (HPF) and freeze substitution (FS) is a newer alternative method that rapidly freezes non‐cryoprotected samples that are then slowly heated in the FS medium, allowing penetration of the tissue to insure adequate fixation. This study addresses several issues related to tissue preservation for electron microscopy. Using mice liver tissue as model the difference between samples fixed chemically or with HPF immediately after excision, or stored before chemical or HPF fixation were tested with specific focus on the nuclear membrane. Findings are that immediate HPF is the method of choice compared to chemical fixation. Of the chemical fixatives, immediate fixation with 2.5% glutaraldehyde (GA)/formaldehyde (FA) is the best in preserving membrane morphology, 2.5% GA can be used as alternative for stored and then chemically processed samples, with 10% formalin being suitable as a storage medium only if followed by HPF fixation. Overall, storage leads to lower ultrastructural preservation, but HPF with FS can minimize these artifacts relative to other processing protocols. Microsc. Res. Tech. 76:942–946, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
A marine unicellular organism, human trophoblast tissue and cultured trophoblast cells of human origin have been satisfactorily preserved for electron microscopy without resort to washing either before dehydration or between different stages of fixation. The time required to fix and dehydrate a specimen using this method is 55 min.  相似文献   

8.
Lee JT  Chow KL 《Scanning》2012,34(1):12-25
Common dehydration methods of cells on biomaterials for scanning electron microscopy (SEM) include air drying, hexamethyldisilazane (HMDS) or tetramethysilane (TMS) treatment and critical point drying (CPD). On the other side, freeze-drying has been widely employed in dehydrating biological samples and also in preparing porous biomaterial scaffolds but not in preparing cells on three-dimensional (3D) biomaterials for SEM examination. In this study, we compare cells on porous hydroxyapatite (HA) prepared by air drying, HMDS and freeze-drying. The effects of fixation and using phosphate buffered saline (PBS) in the fixation were also assessed on three porous calcium phosphate (CaP) materials, namely, HA, α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP) samples. There is no significant difference in samples prepared by HMDS treatment and freeze-drying viewed at low magnification. Besides, it is better not to use phosphate buffer in the fixation step for CaP materials to avoid undesirable spontaneous precipitation of CaPs. On the other hand, fewer exchanges of liquids are required for freeze-drying and hence chemical fixation may not be absolutely required for samples prepared by freeze-drying. Other technical details of the preparation were also investigated and discussed. This study suggests both HMDS and freeze-drying can be employed to dehydrate cells on 3D scaffolds for SEM examination.  相似文献   

9.
The morphology of the hair cells of the inner ear end organs from the domestic pig ( Sus scrofa ) have been studied using a combination of Scanning and Transmission Electron Microscopy (SEM and TEM), revealing hair cells from the cochlea and vestibule using a novel surgical and technical approach. This is the first time that the inner ear hair cells from S. scrofa have been studied, thus providing useful anatomical information on the morphology of the hair cells from the cochlea, saccule and utricle from a large mammal. Anatomical information in relation to the morphology of the inner ear is of considerable importance, both in the pathological diagnosis of trauma and in the development of cochlea implants and other biotechnological systems associated with the enhancement of hearing. Standard fixation protocols using cardiac perfusion was not employed in this study as this method cannot always be applied, such as the pathological examination of the human ear, or the study of animals protected by endangered species legislation. With the exception of a very few countries, cetaceans cannot be killed for research purposes, yet physiological information on the inner ear from these species is urgently required for ecological assessment reasons. Supporting the use of S. scrofa as a model for cetacean hearing research is that this animal is a member of the order Artiodactyla, which includes both the hippopotamus and cetaceans. Being of a similar size, the pig is an ideal subject for developing protocols and surgical techniques required to investigate both the human and small cetacean auditory systems.  相似文献   

10.
The application of the conventional double-fixation method (glutaraldehyde and osmium tetroxide) to whole yeast cells is difficult because the thick cell wall of the yeast prevents the penetration of osmium tetroxide. However, this problem was solved by using the freeze-substitution fixation method. Therefore, it was possible to examine the intracellular structures of the yeast cells without digestion of the cell wall. In the present method, specimens for transmission electron microscopy and for scanning electron microscopy were prepared simultaneously. By scanning electron microscopic observation, three-dimensional information about internal structures was obtained. In the cytological analysis of the yeasts, intracellular structures were well preserved by using the freeze-substitution fixation method. On the outer leaflet of the nuclear envelope, many ribosomes were attached. The rough endoplasmic reticulum and Golgi apparatus were clearly seen in the yeast cytoplasm. The Golgi stack appeared to consist of smooth membranes, and small vesicles were present beside it. The details of other structures such as the nuclear division apparatus, actinlike filaments, and viruslike particles were also revealed. The present technique can be applied to most species of yeast cells. With this new information, the previous model of a yeast cell was modified.  相似文献   

11.
The preparation of frozen-hydrated samples for scanning electron microscopy to observe symbionts in Azolla is described and compared to the conventional method of chemical fixation followed by critical-point drying. The frozen-hydrated specimens preserve the structure of the associating symbionts and the liquid phase in the Azollaleaf cavity. The leaf cavity structure and the endosymbionts in the frozen-hydrated specimens were intact and unharmed throughout the fixation. The cyanobiont cells were distributed along the envelope of the leaf cavity, and did not aggregate around the hair cells, as reported for chemical fixation specimens. The mucilage layer removed by the chemical fixation could be observed in the cryo-fixation specimens, especially at the lower part of the cavity.  相似文献   

12.
The atomic force microscope (AFM) has been used to image a wide variety of biological samples, including cultured cells, in air. Whilst cultured cells have been prepared for AFM analysis using a variety of matrices and fixatives, a definitive study of sample preparation and its effects on cell morphology has not, as far as the authors are aware, previously been reported. Although a considerable number of cell fixatives exist, no single fixative is ideal for all investigations. Prior to the performance of specialised techniques, such as atomic force microscopy of cultured cells in air, the cell fixation method must be investigated and optimised. The fixative abilities of 2% paraformaldehyde-lysine-periodate, 0.25% glutaraldehyde, paraformaldehyde-glutaraldehyde, 4% phosphate-buffered formal saline, 1% formaldehyde, methanol:acetone, formal saline, 4% paraformaldehyde and ethanol:acetic acid were assessed in this study. A qualitative assessment system was used to evaluate the efficacy of the above fixatives using conventional fixation criteria (i.e. the presence of fibroblastic morphology consistent with optical microscopy and the absence of fixation artifacts). The optimal fixative was identified as 4% paraformaldehyde, which was capable of providing optically consistent images of BHK-21 (fibroblastic) cells, whose heights remained within the measurement capability of the AFM instrument used in this study.  相似文献   

13.
Scanning electron microscopy (SEM) is commonly used in the analysis of scaffolds morphology, as well as cell attachment, morphology and spreading on to the scaffolds. However, so far a specific methodology to prepare the alginate hydrogel (AH) scaffolds for SEM analysis has not been evaluated. This study compared different methods to fix/dehydrate cells in AH scaffolds for SEM analysis. AH scaffolds were prepared and seeded with NIH/3T3 cell line; fixed with glutaraldehyde, osmium tetroxide, or the freeze drying method and analyzed by SEM. Results demonstrated that the freeze dried method interferes less with cell morphology and density, and preserves the scaffolds structure. The fixation with glutaraldehyde did not affect cells morphology and density; however, the scaffolds morphology was affected in some level. The fixation with osmium tetroxide interfered in the natural structure of cells and scaffold. In conclusion the freeze drying and glutaraldehyde are suitable methods for cell fixation in AH scaffold for SEM, although scaffolds structure seems to be affected by glutaraldehyde. Microsc. Res. Tech. 78:553–561, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Liver sinusoidal endothelial cells (LSECs) can optimally be imaged by whole mount transmission electron microscopy (TEM). However, TEM allows only investigation of vacuum‐resistant specimens and this usually implies the study of chemically fixed and dried specimens. Cryo‐electron microscopy (cryo‐EM) can be used as a good alternative for imaging samples as whole mounts. Cryo‐EM offers the opportunity to study intact, living cells while avoiding fixation, dehydration and drying, at the same time preserving all solubles and water as vitrified ice. Therefore, we compared the different results obtained when LSECs were vitrified using different vitrification conditions. We collected evidence that manual blotting at ambient conditions and vitrification by the guided drop method results in the production of artefacts in LSECs, such as the loss of fenestrae, formation of gaps and lack of structural details in the cytoplasm. We attribute these artefacts to temperature and osmotic effects during sample preparation just prior to vitrification. By contrast, by using an environmentally controlled glove box and a vitrification robot (37 °C and 100% relative humidity), these specific structural artefacts were nearly absent, illustrating the importance of controlled sample preparation. Moreover, data on glutaraldehyde‐fixed cells and obtained by using different vitrification methods suggested that chemical prefixation is not essential when vitrification is performed under controlled conditions. Conditioned vitrification therefore equals chemical fixation in preserving and imaging cellular fine structure. Unfixed, vitrified LSECs show fenestrae and fenestrae‐associated cytoskeleton rings, indicating that these structures are not artefacts resulting from chemical fixation.  相似文献   

15.
Simultaneous fixation was investigated for a marine organism: the monogenean flatworm ectoparasite Merizocotyle icopae. Four protocols for primary fixation were compared: 3% glutaraldehyde alone in 0.1M cacodylate buffer for a minimum of 2 hours; 1% glutaraldehyde in combination with 1% osmium tetroxide, both in 0.1M cacodylate buffer, until tissues darkened (5-20 minutes); 1% glutaraldehyde in 0.1M cacodylate buffer in combination with 0.5% potassium ferricyanide-reduced osmium until tissues darkened (5-20 minutes); 1% glutaraldehyde in combination with 1% osmium tetroxide, both in 0.1M cacodylate buffer, for 30 minutes. The study confirms that the standard method for transmission electron microscopic fixation (first listed protocol) routinely applied to platyhelminths is optimal for ultrastructural preservation, but some simultaneous fixation methods (second and third listed protocols) are acceptable when rapid immobilization is needed. Scanning electron microscopic preparations may be improved using simultaneous primary fixation.  相似文献   

16.
A method is presented for processing single cells for conventional ultrathin sectioning without the use of fixatives and dehydration media. The cells were fixed by a physical method--spray freezing--which provides extremely high cooling rates, needs no pretreatment with cryoprotective agents and is therefore assumed to maintain the in vivo morphology of the cell. Hitherto cells prepared in this way have been investigated exclusively by freeze etching. To combine the advantages of this method with those of conventional ultrathin sectioning we have processed spray frozen cells with widely varying water contents (spermatozoa and lymphocytes) by freeze drying at 188 K and vacuum embedding. When compared to conventional chemical fixation the differences found in ultrastructural preservation of spermatozoa using this kind of preparation were confined to the arrangement of spermhead membranes and middlepiece structures. Lymphocyte structure was much closer to that known from chemical preparation, the only differences being a denser cytoplasm, denser mitochondrial matrices and thicker plasma membranes. These differences are probably due to the absence of eluating and dissolving effects present in conventional chemical preparations. The ultrastructural preservation of spray frozen cells is not different after freeze etching or after freeze-drying and vacuum embedding. This indicates clearly that drying and resin embedding does not produce artefacts and that structural preservation is therefore limited by the quality of cryofixation. Therefore this method is considered a contribution to the problem of preservation of the in vivo assembly of cellular substructure. Furthermore it seems to be a potential basis for preparation of soluble or diffusible substances or cellular compounds which would be influenced by fixatives and dehydrating agents.  相似文献   

17.
A technique is given for the preparation of a sheet of epithelial cells from the capsule of the crystalline lens. A new method is described for fixation and staining with fluorescent phalloidin or actin antibody in order to localize the actin cytoskeleton in this tissue. Optical section of the preparation resolves such actin features as apical polygonal arrays, sequestered actin bundles, perinuclear actin aggregates, observed here for the first time, and filamentous networks in the basal region of the cell. This method is superior to previous ones in its ability to preserve actin-abundant sectors distinctively.  相似文献   

18.
Ionic lanthanum is commonly used to trace permeability pathways across epithelia and endothelia in biological electron microscopy. A method for obtaining a uniformly dense precipitate of lanthanum is described. The method, which is a modification of the technique described by Shaklai and Tavassoli (1977) was suitable for fixation of cell cultures grown on permeable filter inserts and was successfully applied to study opening of tight junctions by hypertonic solutions in the airway epithelial cell line 16HBE14o(-). The preparation method formed the basis for a semiquantitative morphological determination in which the tight junctions were subdivided as "intact," "weakened," and "open." By using this modified technique, it could be demonstrated that opening of tight junctions in airway epithelial cells increased, with increasing osmolarity with electrolytes having a stronger effect than nonelectrolytes. A significant linear relationship was found between the osmolarity of the medium and the open state of the tight junctions (as determined by the semiquantitative morphological technique) or the transepithelial electrical resistance.  相似文献   

19.
The atomic force microscope (AFM) has provided nanoscale analyses of surfaces of cells that exhibit strong adhesive and cell spreading properties. However, it is frequently reported that prior fixation is required for reliable imaging of cells with lower adhesive properties. In the present study, the AFM is used to assess the effects of fixation by glutaraldehyde on the elastic modulus of a human rhabdomyosarcoma transfectant cell line RDX2C2. Our results show a sharp increase in the elastic modulus for even mild fixation (0.5% glutaraldehyde for 60 s), accompanied by a dramatic improvement in imaging reproducibility. An even larger increase is seen in NIH-3T3 mouse fibroblasts, although in that case fixation is not typically necessary for successful imaging. In addition, our results suggest that treatment with glutaraldehyde restricts the content of the resulting images to features nearer to the cell surface.  相似文献   

20.
Various fixation methods for transmission electron microscopy (TEM) were tested on Caenorhabditis elegans embryos. By combining various techniques, using 3.4% chitinase in combination with 1% alpha-chymotripsin, we were able to establish a new fixation procedure that for the first time preserves both membranes and internal cellular ultrastructure of C. elegans embryos in different stages of development. This unique procedure will enable a hitherto unattainable standard for TEM research of C. elegans embryos. Sectioning of specific developmental stages fixed with this method allows a detailed study of ultrastructural aspects of embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号