首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The present work studies the intraparticle diffusivity in batch adsorption systems as a function of the initial sorbate concentration. The systems under investigation are basic dyes, namely Basic Blue 69, Basic Red 22 and Basic Yellow 21 and their binary and ternary combinations, all adsorbing onto activated carbon Filtrasorb 400. They study is based on the film-pore diffusion model and the output is a combination of the external mass transfer coefficient, kf and the effective diffusivity, Deff that yields congruent experimental and theoretical kinetic data. It has been found the Deff varies with Co in an exponential decay function. Furthermore. Deff values undergo a general reduction in the multisolute systems compared to the single component systems. Also, the relative diffusion rates in the multisolute systems are found to change such that Deff of the slower diffuser is enhanced and that Deff of the faster diffuser is inhibited.  相似文献   

3.
Abstract

In the present work, kinetics of crystal violet (CV) adsorption on bentonite was studied by pore volume and surface diffusion model (PVSDM), surface diffusion model (SDM), and pore volume diffusion model (PVDM). The adsorption decay curves were obtained in batch system using different adsorbent dosages. The PVDM model did not interpreted the kinetic adsorption since the calculated value of Dp equal to 5.64?×?10?7 cm2 s?1 predicted a slower adsorption than that obtained by the experimental data. The PVSDM results indicates that the intraparticle diffusion is predominantly due to surface diffusion (93%) and the pore volume diffusion can be negligible. Once the surface diffusion was the limiting step, the estimation with one (Ds) and two (Dsq and α) parameters were tested in the SDM model. The statistical analysis revealed that the one-parameter SDM model was most appropriate to predict the CV adsorption on bentonite. The optimal values of Ds ranged from 6.19?×?10?10 to 6.49?×?10?10 cm2 s?1, and decrease with the adsorbent dosage.  相似文献   

4.
Various fly ash samples with different unburnt carbon contents were collected, characterised and tested for adsorption of basic dyes, Methylene Blue and Crystal Violet, in aqueous solution. It was found that unburnt carbon plays a major role in dye adsorption. The mineral matter of fly ash has little adsorption capacity and most of the adsorption capacity of fly ash can be attributed to the unburnt carbon. The fly ash with higher unburnt carbon content will have higher adsorption capacity. For the carbon‐free fly ash, adsorption capacities for Methylene Blue and Crystal Violet are only 2 × 10?6 mol g?1 and 1.0 × 10?6 mol g?1, respectively, while the adsorption capacities for Methylene Blue and Crystal Violet on carbon‐enriched fly ash are 1.2 × 10?4 mol g?1 and 1.0 × 10?4 mol g?1, respectively. A two‐site Langmuir adsorption model best describes the adsorption isotherm. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
Experimental adsorption isotherm of two basic dyes: Basic Blue 3 and Basic Red 24 from aqueous solution onto modified nylon 6,6 were analyzed by using a double layer adsorption model with two energy levels. Such model is based on statistical physics treatment. The parameters involved in the analytical expression of this model such as the fraction or the number of adsorbed dye molecule(s) per site, n, the receptor sites density, NM, and the energetic parameters, c1 and c2, were determined by fitting the experimental adsorption isotherms at four temperatures between 293 and 353 K with different degrees of grafting between 20 and 80%. The evolution of these parameters versus temperature and the grafting percent allows us to interpret and better understand this adsorption process at molecular level. Two different behaviors of the two dye molecules were highlighted according to their localized and non localized charges. The configurational entropy at various temperatures has also been studied. This parameter allowed to deduce some results related to the evolution of the disorder at the adsorption surface. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
竹炭对碱性品红的吸附性能研究   总被引:2,自引:1,他引:1  
研究了竹炭对碱性品红染料的吸附性能,考察了竹炭用量、竹炭粒径、吸附时间、pH值、温度和染料浓度等因素对吸附效果的影响。实验结果表明,脱色率随着竹炭用量的增加而增大,竹炭粒径的减小而增加,用200~300目竹炭处理25 mg/L的碱性品红溶液,当加入量为4 g/L时,吸附平衡时间为10 h,脱色率为90.1%;在不改变碱性品红结构的pH范围内(pH<9),脱色率均大于74%;溶液温度升高,脱色率增大,但随着染料浓度增加,温度对脱色率的影响越来越小;Langmuir等温方程比Freundlich等温方程更适合于描述竹炭对碱性品红的吸附行为。  相似文献   

7.
《云南化工》2019,(8):75-76
页岩气是指主体位于暗色泥页岩或高碳泥页岩中,以吸附态或游离态为主要赋存方式的非常规天然气。页岩孔隙结构复杂,一般以纳米孔隙占优势,用常规储层孔隙的表征方法难以解释美国的高产页岩气系统。因此,页岩纳米孔隙的表征成为制约页岩气资源评价的关键因素。就浅谈页岩孔隙结构及多层吸附模型等方面的研究。  相似文献   

8.
张林生  刘周明  李光耀  陈婷婷  薛冰 《化工学报》2019,70(11):4172-4180
在基于直接接触换热法的开式吸附热泵系统中,引入预吸附过程或预设传质通道,考察其对蒸汽生成和系统性能的影响。实验结果表明,预吸附蒸汽压力为0.0680 MPa(饱和温度=89.2℃),系统生成高温蒸汽的平均温度为203℃,系统整体温升为98.4℃,相对于无预吸附系统,生成蒸汽的时间和质量分别增加52.2%和27.0%,系统制热系数和制热功率分别提升28.2%和27.2%。预置树枝状传质通道后,生成蒸汽的时间和质量分别增加了17.8%和8.75%,系统制热系数和制热功率分别提升8.16%和9.05%。预吸附过程使吸附床较快达到整体吸附和热力平衡,缩短蒸汽到达床层出口的时间。预吸附压力越高,系统到达整体吸附平衡的用时越短,蒸汽生成时间越早。传质通道促进吸附床局部平衡的达成,减小局部传质阻力,使部分蒸汽可迅速到达出口。整体和局部吸附平衡的快速达成,均强化了蒸汽的动态生成过程,提升系统整体性能。  相似文献   

9.
聚氯乙烯生产的批量控制和批量管理   总被引:1,自引:0,他引:1  
介绍了聚氯乙烯生产中批量控制和批量管理的概念及S88标准,提出了在聚氯乙烯生产中应用批量管理的基本方法。  相似文献   

10.
A solution to the homogeneous surface diffusion model has been developed and incorporated into a batch adsorption model based on external boundary layer mass transport and homogeneous diffusion. The model has been extensively tested using three experimental adsorption systems, namely, phenol on carbon, basic yellow dye on carbon and basic blue dye on silica. The effect of initial solute concentration and adsorbent mass has been studied in 23 batch experiments, which have been modelled using the collocation solution method to solve the homogeneous surface diffusion equation. The theoretical concentration decay curves show a high degree of correlation with experimental data.  相似文献   

11.
研究了牛血清白蛋白在配基密度不同的两种疏水性吸附剂Phenyl Sepharose FF low sub和Phenyl Sepharose FF high sub上的吸附平衡和孔内传质动力学,重点考察了盐种类和浓度的影响.结果表明,Na2SO4溶液中盐浓度的增加导致蛋白质吸附容量的增大和解离常数的降低比(NH4)2SO4溶液更显著.利用孔扩散模型得到的有效扩散系数随盐浓度及配基密度的增大而提高,表明表面扩散作用对孔内传质的贡献随吸附容量提高而增大.  相似文献   

12.
Several biocomposites were synthesized by copolymerizing hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) at varied molar ratios in the presence of different wt% of collagen (CLG) and attapulgite (APG) clay. The structure and properties of the biocomposite adsorbents were characterized by Fourier transform infrared apectroscopy, nuclear magnetic resonance, X-ray photo electron spectroscopy, X-ray diffraction, scanning electron microscope, transfer electron microscopy, energy-dispersive X-ray analysis, differential thermal analysis–thermogravimetric analysis, point zero charge analysis, mechanical properties, and pH reversibility tests. The synthesis variables were optimized with a central composite design of response surface methodology (RSM). The biocomposite prepared with an optimized composition of 1.5 wt% CLG, 1.7 wt% APG, and 5:1 molar ratio of HEMA:IA showed an adsorption capacity (Qe, mg/g) of 674.4/602.4 for methylene blue (MB)/Rose Bengal (RB) dye from a feed containing 200 mg/L of MB + RB dye mixture in batch mode. In a fixed bed in column mode, the optimized biocomposite showed a removal% of 82.8/71.3 for 100 mg/L inlet concentration, 20 ml/min flow rate, and 20 mm bed height with a breakthrough time of 23/31 min and a mass transfer coefficient (kmtc × 105 cm/s) of 8.36/7.67 for MB/RB as single dye solution.  相似文献   

13.
The adsorption of telon blue (acid blue 25) dye and deorlene yellow (basic yellow) dye on to carbon has been studied. A two-resistance mass transfer model has been developed based on film resistance and homogeneous solid phase diffusion. The model may be applied over a wider range of operating conditions than previous models since it has more extensive analytical components. The variables investigated were initial dye concentration and solid: liquid ratio, and the experimental and theoretical results were in good agreement. The adsorption of telon blue on to carbon has been described using an external mass transfer coefficient of 2.0 × 10−3 cm s−1 and a homogeneous solid phase diffusion coefficient of 2.0 × 10−9 cm2 s−1. The adsorption of deorlene yellow has been described using an external mass transfer coefficient of 1.0 × 10−3 cm s−1 and a homogeneous solid phase diffusion coefficient of 3.0 × 10−10 cm2 s−1.  相似文献   

14.
This article deals with the dye adsorption and desorption properties of Mentha pulegium (MP) from single and binary (mixture of dyes) systems. Direct Red 80 (DR80) and Acid Black 26 (AB26) were used as model dyes. The Fourier transform infrared (FTIR) was used to investigate the biosorbent characteristics. The effects of biosorbent dosage, contact time, dye concentration, salt, and pH on dye removal were studied. The biosorption isotherms, kinetics, and thermodynamic were studied. In addition, dye desorption was carried out to study adsorbent recovery. The results showed that the isotherm data of single and binary systems of dyes followed the Langmuir isotherm. The adsorption kinetic of the dyes was found to conform to a pseudosecond order kinetic model. Desorption tests showed maximum dye releasing of 97% for DR80 and 95% for AB26 in single system and 92% for DR80 and 94% for AB26 in binary system of dyes at pH 12. The thermodynamic data showed that the biosorption process is spontaneous, endothermic, and a physisorption reaction. It can be concluded that MP is an ecofriendly biosorbent to remove dyes from single and binary systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
BACKGROUND: The sorption of arsenate, a poison of acute toxicity found in natural waters, onto chitosan, a biosorbent derived from waste seafood shells has been studied. A batch adsorber design model was developed to determine how much chitosan adsorbent is required to reduce the arsenate concentration in solutions to the WHO standard of 10 µg L?1. RESULTS: A series of batch kinetic experiments has been carried out at different initial pH values. The initial arsenate sorption appears to be completed after 30 min, however, a steady reversible reaction takes place resulting in the desorption of arsenate over 48 h. These phenomena in the batch kinetic data have been correlated simultaneously using the newly developed pseudo‐first order reversible model. Two batch reactor design models have been developed and compared. The first model is a conventional approach based on the equilibrium isotherm capacity equation. A second batch adsorption reactor design is based on the principle of contacting time required, tmax, for the chitosan to achieve its maximum adsorption capacity, qmax. The practical outcome from the second batch adsorber model results in a saving in adsorbent mass per batch of approximately 39.4%, 96.2% and 92.3% chitosan adsorbent at pH conditions of 3.5, 4.0 and 5.0, respectively. CONCLUSION: The adsorbent cost and handling costs are reduced in the second batch adsorber model. There is also a significant savings in the batch turnaround time required in the batch adsorber design when the design is based on the maximum adsorption capacity rather than the equilibrium adsorption capacity. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
对PAM-LiCl水凝胶复合吸附剂进行了吸附特性实验研究,基于D-A方程拟合其特性曲线,建立了该凝胶蜂窝吸附床的三维数学模型,用COMSOL软件完成了吸附床干燥/湿润工况下的动态吸/脱附过程模拟,结合实验完成该数学模型的验证,最终实现吸附床结构的优化。研究表明,蜂窝结构大幅提升了吸附床的吸/脱附性能。吸附速率与蜂窝传质通道的孔隙度呈正相关;总吸水量先增大后减小,当孔隙度为20%时,总吸水量最大。吸附床的吸附量随吸附床厚度的增大而降低。当空气流速低于3.6 m/s时,提高空气流速能显著增强吸附床的吸附性能。蜂窝吸附床解吸性能良好,在60℃ & RH10%的热空气中可实现完全解吸。  相似文献   

17.
The bamboo charcoal modified with Cu2+ and 3-aminopropyl trimethoxy silane (BC-Cu/Si-NH2) was synthesized and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and surface acid–base potentiometric titration. The adsorption for acid fuchsin (AF) dyes onto BC-Cu/Si-NH2 was investigated. Moreover, response surface methodology was performed to optimize the process parameters including pH, initial dye concentration, adsorbent dosage, and temperature. The results presented that the adsorption process was mainly influenced by initial AF concentration and adsorbent dosage. Isotherm studies revealed that the adsorption data fitted well with the Sips model and Dubinin–Radushkevich (D–R) model, which indicated the monolayer, homogeneous, and physical nature of the adsorption process. The maximum adsorption capacity calculated from D–R model could approach approximately to 14.91 mg g−1 at 40 °C, and the maximum adsorption capacity of Sips reached to 10.77 mg g−1 at 40 °C. The kinetic experimental data matched well with Spahn and Schlunder model as well as pseudo-second-order model. In addition, intraparticle diffusion was not the only rate-controlling step of adsorption process. Thermodynamic parameters revealed the feasibility, spontaneity, and endothermic nature of adsorption. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47728.  相似文献   

18.
This work considers the problem of controlling batch processes to achieve a desired final product quality subject to input constraints and faults in the control actuators. Specifically, faults are considered that cannot be handled via robust control approaches, and preclude the ability to reach the desired end‐point, necessitating fault‐rectification. A safe‐steering framework is developed to address the problem of determining how to utilize the functioning inputs during fault rectification to ensure that after fault‐rectification, the desired product properties can be reached upon batch termination. To this end, first a novel reverse‐time reachability region (we define the reverse time reachability region as the set of states from where the desired end point can be reached by batch termination) based MPC is formulated that reduces online computations, as well as provides a useful tool for handling faults. Next, a safe‐steering framework is developed that utilizes the reverse‐time reachability region based MPC in steering the state trajectory during fault rectification to enable (upon fault recovery) the achieving of the desired end point properties by batch termination. The proposed controller and safe‐steering framework are illustrated using a fed‐batch process example. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

19.
吸附条件下二元冰制备   总被引:1,自引:0,他引:1       下载免费PDF全文
刘超  章学来 《化工学报》2017,68(4):1358-1363
搭建了真空制冰动态特性实验台,在相同起始温度、预设压力下改变喷射流量,通过对闪蒸室内温度、压力等参数的采集,分析了流量及固体吸附模块对动态二元冰制备过程的影响。研究表明流量越大平衡态压力越低,平衡时闪蒸室内温度基本不变,维持在0℃左右;通过对含冰率的测定发现过高流速并不利于冰晶的生成,较低喷射速度下成冰率相对较高;吸附条件下易形成动态平衡环境,且更有助于维持较低的平衡压力。  相似文献   

20.
采用直接接触法提高吸附热变换器内的传热传质速率,回收热水直接生成过热蒸汽。对蒸汽生成过程进行数值建模,耦合质量、能量和动量方程。气液固的三相计算被合理简化成两个由一个移动水-气界面连接的两相区域计算。模拟研究填充床内的沸石颗粒分布如松散-密集型和密集-松散型对蒸汽生成的影响。两种填充床生成蒸汽的总质量相同。密集-松散型生成蒸汽的时间短,但生成速率快。密集-松散型生成蒸汽与入水的时间比值为58.8%,生成的蒸汽均保持在峰值,最高温度达249℃,系统整体温升达139℃,而松散-密集型生成的蒸汽仅有1/3保持在峰值。密集-松散型出口处与水-气液面产生蒸汽的质量比值大,表明该床层的颗粒分布更有利于蒸汽的快速通过。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号