共查询到20条相似文献,搜索用时 15 毫秒
1.
Interfacial shear strengths (IFSS) between the fiber and the matrix in two SiC fiber–reinforced polycarbonate (PC) composites (TFC) were investigated through the fragmentation method and the acoustic emission (AE) technique. Statistical analysis of SiC fiber tensile strength was performed mainly in terms of a Weibull distribution. The tensile strength and elongation for SiC fiber decreased with increasing gauge lengths, because of the heterogeneous distribution of flaws on the fiber surface. Using an amino-silane coupling agent, the IFSS showed significant improvement, in the range of 150%, under dry conditions. On the other hand, in the aspect of the environmental effect, the IFSS was improved about 170% under wet conditions (immersed in hot water at 85°C for 75 min). This is probably due to chemical and hydrogen bonds in the two different interphases in the SiC fiber/silane coupling agent/PC matrix system. In-situ monitoring of AE during straining of microspecimens showed the sequential occurrence of two distinct groups of AE data. The first group may result from SiC fiber breakages, and the second probably results from mainly PC matrix cracking. Characteristic frequencies coming from the failures of the fiber and the PC matrix were shown via fast Fourier transform (FFT) analysis. By setting an appropriate threshold level, a one-to-one correspondence between the number of AE events and fiber breakages was established. This AE method could be correlated successfully to the IFSS via the fragmentation technique, which can also applied to nontransparent specimens. 相似文献
2.
The effect of strain rate on the mechanical properties of short‐hemp‐fiber‐reinforced High Density Polyethylene is characterized and modeled at different values of and hemp fiber volume fraction (vf) under dry and wet conditions. Based on the experiments, a generalized comprehensive power law model is developed to predict the behavior of the mechanical properties as functions of vf, , and moisture absorption. It is demonstrated that the developed model successes to accurately simulate the effects of vf, , and moisture absorption on the mechanical properties of the natural‐fiber‐reinforced composites as well as the unreinforced polymer. POLYM. COMPOS., 35:2290–2296, 2014. © 2014 Society of Plastics Engineers 相似文献
3.
4.
Mohammad Mehdi Jalili Seyyed Yahya Mousavi Amir Soheil Pirayeshfar 《Polymer Composites》2014,35(11):2103-2111
Wood is one of the main materials used for making musical instruments due to its outstanding acoustical properties. Despite such unique properties, its inferior mechanical properties, moisture sensitivity, and time‐ and cost‐consuming procedure for making instruments in comparison with other materials (e.g., composites) are always considered as its disadvantages in making musical instruments. In this study, the acoustic parameters of three different polyester composites separately reinforced by carbon fiber, glass fiber, and hemp fiber are investigated and are also compared with those obtained for three different types of wood specimens called poplar, walnut, and beech wood, which have been extensively used in making Iranian traditional musical instruments. The acoustical properties such as acoustic coefficient, sound quality factor, and acoustic conversion factor were examined using some non‐destructive tests based on longitudinal and flexural free vibration and also forced vibration methods. Furthermore, the water absorption of these polymeric composites was compared with that of the wood samples. The results reveal that the glass fiber‐reinforced composites could be used as a suitable alternative for some types of wood in musical applications while the carbon fiber‐reinforced composites are high performance materials to be substituted with wood in making musical instruments showing exceptional acoustical properties. POLYM. COMPOS., 35:2103–2111, 2014. © 2014 Society of Plastics Engineers 相似文献
5.
Andrea D. Adamczak Adam A. Spriggs Danielle M. Fitch Chris Burke Eugene E. Shin Jaime C. Grunlan 《Polymer Composites》2011,32(2):185-192
A blistering study was performed on a fluorinated polyimide resin and its carbon‐fiber composite in an effort to determine the blister‐formation temperature and the influence of blisters on composite performance. The fluorinated resin and carbon‐fiber composite exhibit higher glass‐transition (435–455°C) and decomposition temperatures (above 520°C) than similar polyimide resins and their carbon‐fiber composites currently used. Two techniques were used to determine moisture‐induced blister formation. A transverse extensometer with quartz lamps as a heating source measured thickness expansion, as did a thermomechanical analyzer as a function of temperature. Both methods successfully measured the onset of blister formation with varying amounts of absorbed moisture (up to 3 wt%) in the samples. The polyimide resin exhibited blister temperatures ranging from 225 to 362°C, with 1.7–3.0 wt% absorbed moisture, and the polyimide composite had blister temperatures from 246 to 294°C with 0.5–1.5 wt% moisture. The blistering effects of the polyimide composites were found to have little correlation with modulus. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers 相似文献
6.
Temperature effect on graphene‐filled interface between glass–carbon hybrid fibers and epoxy resin characterized by fiber‐bundle pull‐out test 下载免费PDF全文
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263. 相似文献
7.
8.
Oluwafemi Ayodele George Xiao Dong Chen Jie Xiao Mengwai Woo Liming Che 《American Institute of Chemical Engineers》2015,61(12):4140-4151
An effective rate approach (ERA) is proposed to achieve a fast and reliable prediction of dryer outlet conditions for a given single‐stage spray drying system operated under a range of scenarios. This approach is improved from existing methods based on simple mass and energy balances due to the incorporation of a reliable drying rate model, which is the reaction engineering approach for the material of interest. It allows quick solution procedure without the need to solve the partial differential equations that govern the heat and mass transfer in the spray drying process. By following a generic procedure, this technique has been exercised on the experimental results from running a monodisperse droplet spray dryer, that is, a well‐established experimental platform for model validation. The proposed ERA has been shown to be rather promising. It could become a powerful approach for proactive control and optimization for existing spray drying facilities. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4140–4151, 2015 相似文献
9.
Kudzu fiber‐reinforced polypropylene composites were prepared, and their mechanical and thermal properties were determined. To enhance the adhesion between the kudzu fiber and the polypropylene matrix, maleic anhydride‐grafted polypropylene (MAPP) was used as a compatibilizer. A continuous improvement in both tensile modulus and tensile strength was observed up to a MAPP concentration of 35 wt %. Increases of 24 and 54% were obtained for tensile modulus and tensile strength, respectively. Scanning electron microscopy (SEM) showed improved dispersion and adhesion with MAPP. Fourier transform infrared (FTIR) spectroscopy showed an increase in hydrogen bonding with an increase in MAPP content. Differential scanning calorimetry (DSC) analysis indicated little change in the melting temperature of the composites with changes in MAPP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1961–1969, 2002 相似文献
10.
Advanced composite materials and fiber‐metal laminates (FMLs) have the potential to offer significant improvements in weight savings and durability in airframe structures. FMLs are an advanced hybrid material system consisting of metal layers bonded with fiber‐reinforced polymer layers. This paper presents an overview of the history of fibre‐metal‐laminates, describes several common types and also discusses the results of impact durability experiments conducted at the Structures, Materials and Propulsion Laboratory of the Institute for Aerospace Research (SMPL‐IAR) of the National Research Council Canada (NRCC). An impact fixture was developed specifically for FMLs and is also described. Numerous low velocity impact tests have been carried out that demonstrate the improved impact response of FMLs over traditional composite materials. This research builds upon earlier impact testing on carbon‐fiber‐reinforced polymers conducted by NRCC and Carleton University. 相似文献
11.
A.N. Frone S. Berlioz J.‐F. Chailan D.M. Panaitescu D. Donescu 《Polymer Composites》2011,32(6):976-985
Polymer composites from polylactic acid (PLA) and two types of cellulose fibers obtained either by acid hydrolysis of microcrystalline cellulose (HMCC) or by mechanical disintegration of regenerated wood fibers (MF) were prepared and characterized. To enhance the compatibility of the cellulose fibers with PLA matrix, a surface treatment based on 3‐aminopropyltriethoxysilane (APS) was performed. The Fourier Transform Infrared (FTIR) spectroscopy was used to determine the chemical groups involved in the surface modification reaction. The silanization treatment resulted in different modifications on both types of cellulose fibers because of their different structural and morphological characteristics. The composites were prepared by incorporating 2.5% of the treated or untreated HMCC and MF into a PLA matrix using a melt‐compounding technique. An improved adhesion between the two phases of the composite materials was observed by scanning electron microscopy thanks to treatment. The dynamic mechanical thermal analyses showed that both untreated and silane treated fibers led to an improvement of the storage modulus of PLA in the glassy state. A higher enhancement of the storage modulus in the case of PLA/HMCC composites than the composites containing MF was obtained as a result of the high aspect ratio of these fibers which allows better matrix‐to‐filler stress transfer. Furthermore, the storage modulus of PLA composites was enhanced by silanization even at higher temperatures especially after thermal treatment. The cellulose fibers addition in PLA matrix modified significantly the relaxation phenomenon as observed in tan δ curves, emphasizing strongly modified molecular mobility of PLA macromolecules and crystallization changes. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers. 相似文献
12.
In this study the morphology and properties of a biodegradable aliphatic–aromatic copolyester mixed with kenaf fiber were investigated. Untreated kenaf fiber, as well as kenaf fiber treated with NaOH, and with NaOH followed by silane coupling agent treatment at various concentrations, were used as fillers in the composites. The biocomposites were prepared by melt‐mixing and a 10 wt% fiber loading was used for all the composites. The properties of the biocomposites were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile properties, environmental scanning electron microscopy (ESEM), and biodegradability. The extent of silane initiated grafting was followed by gel content determination. The presence of fiber and fiber treatment influenced the determined properties in a variety of ways, but the best balance of properties were found for the copolyester mixed with alkali‐treated fiber. This composite showed improved thermal, thermomechanical, and mechanical properties. The introduction of alkali treatment caused increased surface roughness in the fiber, which resulted in mechanical interlocking between the filler and the matrix, while silane treatment slightly reduced the properties. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers 相似文献
13.
The effect of fiber orientation on the toughening of polymers by short glass fibers generally below their critical length was investigated using specimens with either well‐aligned or randomly oriented fibers. The fibers were aligned by an electric field in a photopolymerizable monomer, which was polymerized while the field was still being applied. These materials were fractured with the aligned fibers in three orientations with respect to the crack plane and propagation direction. Specimens with fibers aligned normal to the fracture plane were the most tough, those with randomly oriented fibers were less tough, and those with fibers aligned within the fracture plane were the least tough. The fracture behaviors compared favorably with predictions based on observed processes accounting for fiber orientation. The processes considered were fiber pull‐out (including snubbing), fiber breakage, fiber–matrix debonding, and localized matrix‐yielding adjacent to fibers bridging the fracture plane. Fibers not quite perpendicular to the fracture plane provided the greatest toughening; these fibers pulled out completely and gave a significant contribution from snubbing. Fibers at higher angles provided less toughening, involving nearly equal contributions from pull‐out, breakage, and debonding. Fibers within the fracture plane provided the least toughening, involving debonding alone. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2740–2751, 2003 相似文献
14.
The evaluation of single‐fiber softness by bending is an ingenious and vital approach for the basic investigation of both the fiber bending properties and the textile softness. The bending behavior and bending modulus of wool, alpaca and silk fibers have been measured by an axial‐buckling method developed by the authors, which uses the fiber compression bending analyzer (FICBA). The bending properties of single fibers were quantified by calculating the equivalent bending modulus and the flexural rigidity by measuring the protruding length and diameter of fiber needles and the critical force, Pcr, obtained from the peak point of the force‐displacement curve. The measured data showed that the equivalent bending modulus of the alpaca fiber is higher than that of wool fiber, and even the rigidity is 10 times as high as wool, but its friction coefficient is lower than that of wool, which means that the soft handle of alpaca fabrics is mainly due to the smooth surface and low friction coefficient of alpaca fibers in contrast to that of wool fiber. For the silk fiber, despite high equivalent bending modulus, the smoother handle of silk should be mainly due to the thin fiber diameter in contrast to that of keratin fibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 701–707, 2006 相似文献
15.
Fabrication of thermosetting‐matrix composites is based on a critical step of cure, which involves applying a predefined temperature cycle to a fiber‐resin mixture. Several temperature‐dependent mass transport processes occur in the vicinity of the reinforcement fiber, leading to the formation of an interphase region with different chemical and physical properties from the bulk resin. The cure cycles applied on the macroscopic boundaries of the composite govern the microscopic cure kinetics near the fiber surface, which in turn determines the interphase and composite properties. A predictive approach to directly linking the cure cycles and final composite properties is not presently available and is established for the first time in this paper. A multiscale thermochemical model is developed to predict the concentration profile evolution with time near fiber surfaces at various locations across the composite thickness. The concentration profiles at the gelation time are mapped to modulus profiles within the interphase region, and a finite element analysis is used to determine the overall composite modulus in terms of the constituent interphase, fiber, and matrix properties. Relevant numerical results are presented for the first time where the composite modulus is directly linked to the cure cycle and interphase formation parameters without assumed structures or properties of the interphase. The results provide useful information for selecting material components and cure cycles parameters to achieve desired interphase and composite properties. POLYM. COMPOS., 26:193–208, 2005. © 2005 Society of Plastics Engineers 相似文献
16.
《Polymer Composites》2017,38(12):2798-2805
The thermoplastic matrix composites have gained great importance in last three decades. The chopped basalt fiber (mineral fiber) is considered to be a good fiber due to excellent properties as potential reinforcement of composite materials. In this work, composites of chopped basalt fiber (6 mm) with thermoplastic material Nylon‐6 (Polyamide‐6) were prepared and its mechanical and morphological properties were evaluated for automobile applications. The melt blending was carried out in corotating twin‐screw extruder and injection‐molded test samples were prepared for the analysis. The test samples of composite without coupling agent prepared by varying the loading of basalt fiber content of 5%, 10%, 15%, 20%, and 25% by weight and with coupling agent composite loading of Nylon‐6 and basalt fiber content were kept constant and the coupling agent (PE‐g‐MA) loading were changed as 1, 2, 3, 4, and 5 phr. The Mechanical and SEM properties were evaluated. From the test results, it was observed that the mechanical properties were improved with increasing coupling agent ratio. SEM images show good dispersion and adhesion of matrix and reinforcement. POLYM. COMPOS., 38:2798–2805, 2017. © 2015 Society of Plastics Engineers 相似文献
17.
The usage of wood‐plastic composites (WPCs) is rapidly growing because of their many advantages. However, they still suffer from lack of strength and toughness, which can be improved by adding a small amount of glass fiber reinforcement (GFR). Tensile tests of high‐density polyethylene WPC specimens with varying amounts of wood fiber content and 5% of GFR were carried out. Significant improvements in properties were observed. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers. 相似文献
18.
Adhesive bonding is known to be particularly suitable for thermoset composites with continuous fiber reinforcement as it does not interrupt the fibers because of drilled holes. The frequently used two‐part adhesives often require long curing times for the chemical reaction. At the Institute of Polymer Technology (LKT), a vibration‐assisted hot melt bonding technique (vibration joining) was developed, which offers short cycle times and represents a modification of hot melt bonding, using the machine technology from vibration welding. It is suitable to join thermoplastics with thermoset materials or thermosets using a thermoplastic interlayer, by taking advantage of short cycle time and good lap shear strength, compared to bonding with reactive adhesives. Polym Compos 2009 POLYM. COMPOS., 31:1205–1212, 2010. © 2009 Society of Plastics Engineers 相似文献
19.
Yeng‐Fong Shih Po‐Wei Chen Chin‐San Wu Chien‐Ming Huang Chi‐Fa Hsieh 《应用聚合物科学杂志》2012,123(5):3046-3053
The utilization of disposable chopsticks is very popular in Taiwan, China, and Japan and is one of the major sources of waste in these countries. In this study, recycled disposable chopstick fiber was chemically modified. Subsequently, this modified fiber and polypropylene‐graft‐maleic anhydride were added to polypropylene (PP) to form novel fiber‐reinforced green composites. A heat‐deflection temperature (HDT) test showed an increase of approximately 81% for PP with the addition of 60‐phr fibers, and the HDT of the composite could reach up to 144.8°C. In addition, the tensile strength, Young's modulus, and impact strength were 66, 160.3, and 97.1%, respectively, when the composite material was 40‐phr fibers. Furthermore, this type of reinforced PP would be more environmentally friendly than an artificial‐additive‐reinforced one. It could also effectively reduce and reuse the waste of disposable chopsticks and lower the costs of the materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
20.
This paper deals with prediction of the temperature rise in the stress‐controlled fatigue process of a glass‐fiber‐reinforced polyamide and the application of a temperature and frequency superposition procedure to the S‐N curve. An experimental equation was derived to predict the temperature rise from calculations based on the fatigue test conditions and viscoelastic properties of the material. The temperature rise (ΔT) can be expressed as a product of a coefficient term Φ(L, κ) concerning heat radiation and the test‐specimen shape and a function term Pfat concerning the viscoelastic properties and fatigue test conditions. Φ(L, κ) was found experimentally to derive the equation for predicting the temperature rise blow or above the glass transition temperature (Tg) of the material. The equation σR = −STf A log NfR + STf B was obtained as a procedure for applying temperature and frequency superposition to S‐N curves in consideration of ΔT. This procedure was obtained by combining both temperature‐ and frequency‐superposition techniques. Here, σR and log NfR represents the stress and the fatigue lifetime calculated at a given temperature and frequency, A and B denote the slope and intercept of any arbitrarily chosen S‐N curve, and STf is a shift factor for temperature and frequency superposition. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1783–1793, 1999 相似文献