首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes an investigation of lubricating oils under extreme-pressure (EP) conditions in a specially modified four-ball tester. A new test method developed at the Tribology Department of ITeE described in Part I of this paper was used. In this, during a test run, the applied load is increased continuously and the friction torque is measured. A sudden increase in the friction torque indicates the collapse of the lubricating film — where scuffing is initiated. The load at this moment is called the scuffing load. If the load is increased further, it is possible to observe scuffing propagation until seizure occurs, i.e., a defined, maximum friction torque is reached. Thus, scuffing is considered as a process leading to seizure. Using the method, tribological experiments were performed employing various lubricating oils consisting of viscosity-index improvers and antiwear (AW) and extreme-pressure (EP) additives added to a base oil. Mineral and synthetic base oils of different kinematic viscosities were used. The aim was to investigate the influence of such lubricants on scuffing initiation and propagation with the present methodology. In Part I it was shown that scuffing initiation depends strongly on the kinematic viscosity of the lubricant; the higher the viscosity, the greater the scuffing load. The presence of AW and EP additives in the lubricant increases the scuffing load significantly. It was also shown that the kinematic viscosity of the lubricant oils has no effect on scuffing propagation. However, scuffing propagation is significantly mitigated by AW and, to a greater extent, by EP additives. The results of surface analyses show the decisive nature of the chemical reactions of AW and EP additives with the steel ball surface under scuffing conditions, as well as the possible diffusion of sulphur and phosphorus. Chemical reactions and diffusion lead to the creation of an inorganic surface layer (probably iron sulphide), the good anti-seizure properties of which limit scuffing propagation.  相似文献   

2.
Tests were performed on two different four‐ball testers. The first was used to determine antiwear (AW) and extreme pressure (EP) properties at sliding friction. The second was used to assess the surface fatigue (pitting) life at rolling movement. Lubricating oils of various chemical compositions were tested. A base mineral oil was blended with two different commercial packages of lubricating additives of AW and EP types. The AW additives contained ZDDP and were blended with the base oil at 0.2 and 3wt %. The EP additives were organic compounds of sulphur and phosphorus, blended with the base oil at 1 and 10wt %. It is shown that AW additives not only improve AW and EP properties but also — at 0.2% — are beneficial for the fatigue life. An increase in the concentration of AW additives leads to an improvement of AW and EP properties but — for one of the packages — reduces the fatigue life. EP additives — at 1% concentration — significantly improve EP properties, and to a lesser extent AW properties. Such a concentration of EP additives has no influence on the fatigue life. An increase in the concentration of EP additives leads to a further improvement of EP and AW properties. However, this is accompanied by a considerable decrease in the fatigue life. By using a scanning electron microscope and energy dispersive spectrometer for analysis of the worn surface, mechanisms of action of various lubricating additives under different friction conditions were identified. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The temperature of surface asperities affects lubricant‐surface tribochemical interactions. It is important to know the nature of this to identify ways of preventing scuffing and seizure under extreme‐pressure (EP) conditions. A new model for the determination of the temperature of contacting asperities is presented in this paper. It assumes the superposition of thermal processes occurring on the macroscale and thermal phenomena in the contact of asperity tips (microscale). Numerical results have been obtained for conditions of four‐ball testing of various lubricating oils — a mineral base oil with and without antiwear and EP additives. To calculate the scuffing and seizure temperatures, knowledge of the mechanical and physical properties of the test ball material (bearing steel) and lubricants, as well as the parameters describing the surface topography of the balls, was necessary. Friction coefficient curves were also needed; they were determined during four‐ball tests with a continuously increasing load. For the base oil with lubricating additives, the temperature of contacting surface asperities at the moment of scuffing initiation was calculated to be about 230°C and increased to over 1000°C at the highest loading of the four‐ball tribosystem. This suggests the possibility of tribochemical reactions of the lubricating additives with the steel surface, and diffusion of some elements, a modified surface layer having good antiseizure properties being produced. Such a layer prevents seizure of the tribosystem. For the base oil without lubricating additives, scuffing initiated at about 150°C and the temperature exceeded 1200°C at seizure. The temperature values obtained agree with results in the literature.  相似文献   

4.
Ashless substituted dithiophosphoric acid derivatives (ADPs) are a new generation of multifunctional additives with promising antiwear (AW) and extreme‐pressure (EP) characteristics. Three such additives synthesised in the authors' laboratory have been evaluated for their AW and EP properties by standard four‐ball friction and wear tests. The friction‐reducing properties of these additives were compared with those of a commercial zinc dialkyldithiophosphate (ZDDP). It was found that the phosphorodithioate compounds studied here possessed excellent AW/EP properties. Their AW characteristics were found to be comparable to those of ZDDP at low loads. However, at higher loads they show inferior AW characteristics in comparison to ZDDP. Nevertheless, ADP derived from cashew nut shell oil had a higher load‐carrying capacity than ZDDP. The mechanism of the AW and EP behaviour exhibited by the different additives was investigated using X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM) of the worn surfaces formed during friction. XPS and AES analyses of the worn surfaces reveal that the tribochemical film formed on the ADP‐tested surfaces consisted mainly of metal phosphates and only a small amount of metal sulphides, even though the ADPs contained twice the number of sulphur atoms than phosphorus atoms. The ZDDP‐tested surface showed a mixture of metal sulphides and metal phosphates. Alkylamino substitution appeared to have no significant effect on the AW/EP properties of the additive. XPS and AES analyses also revealed that the tribochemical film formed on an ADP‐tested surface was thicker than that present on the ZDDP‐tested surface at low loads, whereas at higher loads the reverse was true. The higher weld load obtained for the blend containing cashew nut shell oil‐derived ADP is attributed to the thicker adsorbed reaction film formed on the surface due to the long alkyl groups present in the original additive structure. Short‐chain alkyl groups, however, form only a thin adsorbed layer, which may get rubbed off during the friction at high load. The low sulphide formation on ADP‐tested surfaces was attributed to the absence of any metal atom in the additive, which would help in the formation of metal sulphides during tribofragmentation and further tribochemical reactions.  相似文献   

5.
The authors have investigated the action of compositions containing AW/EP additives under scuffing conditions and the influence of temperature on the wear of friction elements lubricated with selected compositions. It has been stated that postponing of scuffing initiation is not always sufficient to obtain very good strength of the surface layer and decreased wear. Furthermore, the results show the influence of temperature and load on the additive action. Extreme friction conditions result in greater wear intensity and change in the lubricating action of additives.  相似文献   

6.
Tribochemistry, the chemistry of interacting surfaces under the influence of a lubricant, helps in the appropriate selection of suitable lubricant additives for specific uses. Modern lubricants are usually formulated from a range of petroleum base oils or synthetic fluids incorporating a variety of chemical additives for performance enhancement. Extreme‐pressure (EP) and anti‐wear (AW) additives are used extensively in lubricants for hypoid gears and metal cutting and forming operations to reduce wear, modify friction, and prevent scuffing of moving metallic parts. The present paper includes the synthesis and the evaluation of the tribological properties of 0.5% (w/v) solutions of some zinc bis‐(alkyl/dialkyl/alkylaryldithiocarbamates) in paraffin oil using 12.7 mm diameter steel bearing ball specimens in four‐ball tests. All the synthesised zinc dithiocarbamate additives in general, and zinc bis‐(morpholinodithio‐carbamate) (A4) in particular, exhibited good AW, EP, and friction‐reducing properties. Additive A4 especially gave low values of wear‐scar diameter and coefficient of friction at higher loads and higher values of load wear index and flash temperature parameter during EP tests (ASTM D 2783) and afforded lower values of wear‐scar diameter in a one‐hour wear test (ASTM D 2266–67). The surface topography of the wear‐scar matrix of the used ball specimens was investigated by scanning electron microscopy.  相似文献   

7.
The paper presents an original study of the influence of extreme pressure and anti-wear (EP/AW) additives on the surface topography of double-phase steel during turning with different cooling media and variable flow rates. The obtained surface topographies were compared using frequency and fractal analyses for dry, minimum quantity cooling lubrication (MQCL), and MQCL + EP/AW methods. Results showed that the addition of phosphate ester-based additives to an active medium caused the formation of tribofilm on the tool-chip interface and thus a change in the lubricating properties by reducing friction. The tool wear and the formation of the thin-layered tribofilm were also incorporated. The application of the MQCL method with the EP/AW additives led to a decrease in particular surface topography parameters from 8 % to 38 % in comparison with the effects of dry cutting and from 6 % to 35 % in comparison with the effects of machining under MQCL conditions. An exception was the result obtained for the surface roughness height parameter Sp, which was higher than that obtained after the MQCL + EP/AW process for the lowest investigated feed per revolution f = 0.1 mm/rev. This observation was correlated with the uneven formation of the tribofilm on the machined surface. The phosphate ester-based additive used in the MQCL + EP/AW method contributed to achieving tool wear that was less than that obtained by the processes conducted under dry and MQCL conditions.  相似文献   

8.
This paper presents results of experiments to enhance antiwear/extreme pressure (AW/EP) properties of a lubricant oil by adding metal nano particles. In this experiment, Al, Sn and Al + Sn nano-particles were selected as trial additives. The AW and EP properties were evaluated on Four-Ball test machine, while the feature and composition of the wear scar surface were investigated by scan electron microscope (SEM) and energy dispersion spectrum (EDS). The test results show that the AW and EP performance can be improved within a wide load range by adding Al + Sn nanoparticles. Analysis of the enhancement mechanism has also been conducted in this experiment and presented in this paper. It is found that nano-Sn particles can be deposited on the friction surface when the pressure was moderate and act as AW additive. It is also found that the nano-Al particles can be deposited under the condition of high load pressure and act as EP additive. Thus, the AW and EP properties of tested lubricant oil have been improved at the same time due to adding both Al and Sn.  相似文献   

9.
Abstract

Organosulphur compounds have been long known to be effective antiwear (AW) and extreme pressure (EP) additives in a wide range of metalworking applications. Several interpretations to explain the properties of these compounds have been proposed, but the mechanisms and surface reaction products are still largely unknown. To understand the tribochemistry of these additives, especially thiols and polysulphides, a new device called 'environmentally controlled tribometer' was developed. It permits to simulate the action of the additives using gases having the same chemical function. After friction experiments, surface analyses were carried out on the tribofilm in order to understand the tribochemical mechanism. The evolution of the friction coefficient versus partial pressure of gaseous additive and sample temperature allowed clear differentiation of organosulphur compounds reactivity. The studies showed that the lubricating properties of the additives depend both on the quantity of sulphur and on the carbon chain length. The results for thiols series showed an increasing of EP and AW efficiency with increasing carbon chain length. The comparison between the liquid phase lubrication and the gas phase lubrication results validates this methodology.  相似文献   

10.
This paper examines the friction and antiwear (AW) properties using SRV (Schwing–Reib–Verschleiss) tribometer and film-forming properties using atomic force microscope (AFM) of one simple model formulation containing solely AW additive and seven oils containing mixture of additives including three zinc-based packages (ZP), ZP with additional AW additives, ZP with extreme pressure (EP) additives, ZP with viscosity index improvers (VII) and one zinc-free ashless package in steel/steel contacts. VII-containing oil show lower boundary and mixed friction coefficients than the other oils. Although all AW additive-containing oils formed tribofilms, AW properties of ZPs appear to be affected antagonistically by EP additives while synergistically by VII. Zn-free additives investigated in this study show higher wear than ZPs.  相似文献   

11.
纳米Al/Sn金属颗粒对润滑油抗磨极压性能的影响   总被引:6,自引:2,他引:6  
利用四球试验机分别对添加有纳米铅粉、锡粉以及Al Sn金属粉的润滑油进行极压和抗磨性能实验。采用SEM(扫描电子显微镜)对摩擦表面进行观察,采用EDS(能量色散谱仪)对表面进行元素测定。测试结果表明.纳米Al Sn金属粉可在较宽的载荷范围内明显改善润滑油的极压抗磨性能。其作用机理是锡粉在低载荷阶段沉积到摩擦表面起到抗磨剂作用,铝粉在高载荷阶段沉积到摩擦表面起到极压剂作用.从而实现了在低载荷到高载荷范围内对润滑油抗磨极压性能的提高.  相似文献   

12.
The authors of this paper investigated the influence of esters of rapeseed oil fatty acids on the lubricating properties of mineral lubricants containing chosen AW/EP additives. Methyl esters, ethylene glycol esters, and glycerol esters as well as some commercial AW/EP packages based on zinc dialkyldithiophosphate, S–P organic compounds, and sulphurized esters of fatty acids were tested. The tribological tests were carried out with the use of a four-ball machine. Antiwear (AW) properties of tested compositions were determined using their limiting load of wear (Goz(40)). It appears that the AW action of esters of rapeseed oil fatty acids depends on their structure. The best AW action is shown by compositions of mineral oil lubricants containing AW/EP additives and methyl esters of rapeseed oil fatty acids. The SEM/EDS analysis of the scar surface layer indicated that the presence of these esters in lubricants causes a change in the interaction between AW/EP additives and the metal surface. These observations were confirmed by the XPS surface analysis.  相似文献   

13.
Research and development on the high biodegradability of additives is indispensable for environmentally friendly lubricants, which is one of the key factors to advance lubricant technology toward “greener” chemistry. The tribological performance of fatty alcohol polyoxyethylene phosphate acid ester (EK), boron-containing amide (BT), dialkyl dithiophosphate ester (DDE), and a mixture of these (compound) as extreme pressure (EP)/antiwear (AW) additives in hydrogenated base oil (GH) were investigated using a four-ball testing machine. The elemental composition and chemical characteristics of the AW films generated on the surfaces of the steel balls were studied using X-ray photoelectron spectroscopy (XPS), and their AW mechanisms are hereby proposed. Thermal degradation tests were conducted to identify their thermal stabilities using thermogravimetry and differential scanning calorimetry. The results show that these additives can greatly improve the EP/AW properties of GH. XPS analyses of the worn surfaces indicate that decomposed borate esters and organic sulfide or nitrides were adsorbed on the worn surface, and the P and S elements of the compound reacted with the metal and existed in the form of phosphates and sulfates, both of which contributed to the formation of a boundary lubricating film. Moreover, these additives provide the lubricants with excellent oxidation resistance and thermal stability.  相似文献   

14.
Study of interaction of EP and AW additives with dispersants using XANES   总被引:2,自引:0,他引:2  
The chemical interaction of two kinds of dispersants (bis-succinimide dispersant and borated bis-succinimide dispersant) with four kinds of antiwear (AW) and extreme pressure (EP) additives (zinc dialkyldithiophosphate, dialkyldithiophosphate ester, diphenylphosphate ester and dialkyldithiocarbamate) has been investigated under different contact pressures. The chemical compositions of the tribofilms have been studied by B, N, P and S X-ray absorption near edge structure (XANES) spectroscopy. The N K-edge XANES analysis has been used to follow the reaction pathway of amine and imide functional groups in the dispersants and their interactions with EP and AW additives. It has been found that AW additives react with amine to form amine phosphate at low load. However, at high load, there is a good evidence for the formation of a nitrate phase in the tribofilms, the first direct observation of oxidative dispersant loss in the rubbing contact. On the other hand, EP additives behave differently and in general are less reactive. The B K-edge XANES has been employed to follow the interaction of borated dispersant with the EP and AW additive. In general, boron originally in the trigonal coordination, is converted to a tetrahedral coordination form in the process of tribofilm formation.  相似文献   

15.
The tribological study of N-containing heterocyclic borate esters as lubricating additives had been the research hotspot. In this work, B–N and B–S–N triazine borate esters were synthesized and their antiwear/extreme pressure (AW/EP) properties were studied. Results showed the synthetical additives had good AW performance. However, B–S–N triazine borate ester showed excellent EP property while B–N triazine borate ester hardly owned EP property. The hydrolytic stability of borate ester additives was improved by the formation of coordination of nitrogen to boron. The XANES spectroscopy analysis showed that there was a layer of borate–oxygen–iron inorganics in the tribofilms. The existence of iron sulfate and iron sulfide guaranteed good AW/EP properties of B–S–N triazine borate ester additive in mineral oil.  相似文献   

16.
Scuffing of gears involves the welding together of locally unprotected metal‐to‐metal contacts when critical limits of pressure and temperature are exceeded. Protection can be maintained by a thick lubricant film, by physically adsorbed layers, or by chemical reaction layers. At higher temperatures, viscosity and film thickness decrease but, using an EP gear oil, due to higher chemical reactivity, the scuffing load capacity is not necessarily reduced accordingly. The reaction temperature of the additives is not always reached for large gears. In this paper the factors that influence the scuffing load capacity are investigated, and test possibilities and calculation methods are outlined.  相似文献   

17.
The research presented in this paper was aimed at elaboration of a new technology for heavy-loaded machine elements, lubricated with ecological oils.The tribological experiments were performed using four-ball tester (scuffing resistance), cone-three balls pitting tester (fatigue life), as well as gear test rig (resistance of lubricated gears to scuffing). The tribosystems were lubricated with various base oil and vegetable-based eco-oil.The tested components were coated with standard single coatings (TiN, CrN) and low-friction coatings (a-C:H:W, MoS2/Ti). The results obtained confirm that low-friction a-C:H:W coating has a great potential for application in heavy-loaded machine components. Under extreme-pressure conditions this coating can take over the functions of anti-wear/extreme-pressure (AW/EP) additives and through this it is possible to minimise the application of toxic lubricating additives and achieve “ecological lubrication”.  相似文献   

18.
The antiwear (AW) and extreme pressure (EP) properties of chlorine, sulphur, phosphorus-containing organic compounds and zinc dialkyldithiophosphate (ZDDP) oil additives are affected greatly by their reactive ability to the metal surface, as well as by the chemical composition, chemical state, physical and mechanical properties of the protective films formed. Over four decades, research has taken place on boundary lubrication, and a much better understanding of the AW and EP action mechanism of one additive by itself in base oil has been obtained, and much more knowledge on the relationship between wear and decomposition of additives, adsorption and reaction of the additive or its decomposed products with metal, has been gained. A series of analytical methods and a great number of modern surface analytical tools have been set up and used for research in this area. The problems and some suggestions for the future study on boundary lubrication of oil additive are proposed.  相似文献   

19.
《Wear》2002,252(3-4):240-249
The effect of zinc dialkyldithiophosphate (ZDDP) addition on the antiwear (AW) and extreme pressure (EP) properties of molybdenum dialkyldithiocarbamate (MoDTC) and molybdenum dialkyl dithiophosphate (MoDTP) are evaluated by standard Four-Ball friction test and also by the determination of coefficient of friction using an oscillating SRV apparatus. The boundary lubrication film formed on the worn surface using the two molybdenum additives and their combination with ZDDP is investigated by depth profile X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to find out the chemistry of tribochemical reaction occurring at the surface during friction. It is seen that MoDTP possesses better AW properties than MoDTC due to its high reactivity with the metal surface. Nevertheless, the AW characteristics of MoDTC could be improved by the addition of ZDDP. The frictional properties of MoDTP, however, do not change by the addition of ZDDP. The synergistic action of ZDDP on MoDTC is attributed to the enhanced decomposition of MoDTC in presence of ZDDP. This is tentatively explained in terms of some interaction of zinc with the electron donating nitrogen present in MoDTC, which would have helped to increase its tribo-reactivity. XPS studies revealed that in the presence of ZDDP, MoDTC form mainly metal sulphides like MoS2 and FeS under friction. The MoDTP+ZDDP derived surface, on the other hand, produced mainly metal phosphate along with molybdenum oxysulphides and small amount of MoS2 and FeS. The mechanism of action of additives is explained.  相似文献   

20.
G. Bollani 《Wear》1976,36(1):19-23
The scuffing behaviour of sliding couples made from 12 NiCr 13 steel, lubricated with SAE 90 and SAE 20 W30 oils with and without additives, was studied as a function of relative sliding speed and bulk oil temperature. It was found that the scuffing load decreases almost inversely with sliding speed. Calculations which take into account the decrease in hardness at increasing temperature show a fairly good constancy of total contact temperature (bulk + flash temperature) at scuffing (i.e. values ranging from 550 ° to 650 °C for all oils and test conditions). At low speeds (up to 1 m s?1) a well-defined increase in scuffing load was found when EP additives were used; at higher speeds this effect was found to have vanished completely. Variations in nominal contact pressure in the range 1 to 3 had no appreciable influence on the scuffing load, indicating that, in the present case, scuffing was associated with a transition from the boundary lubrication regime to the severe wear regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号