首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

2.
Biocomposites are prepared from a cheap, renewable natural fiber, coir (coconut fiber) as reinforcement with a biodegradable polyester amide (BAK 1095) matrix. In order to have better fiber‐matrix interaction the fibers are surface modified through alkali treatment, cyanoethylation, bleaching and vinyl grafting. The effects of different fiber surface treatments and fiber amounts on the performance of resulting bio‐composites are investigated. Among all modifications, cyanoethylated coir‐BAK composites show better tensile strength (35.50 MPa) whereas 7% methyl methacrylate grafted coir‐BAK composites show significant improvement in flexural strength (87.36 MPa). The remarkable achievement of the present investigation is that a low strength coir fiber, through optimal surface modifications, on reinforcement with BAK show an encouraging level of mechanical properties. Moreover, the elongation at break of BAK polymer is considerably reduced by the incorporation of coir fibers from nearly 400% (percent elongation of pure BAK) to 16‐24% (coir‐BAK biocomposites). SEM investigations show that surface modifications improve the fiber‐matrix adhesion. From biodegradation studies we find that after 52 days of soil burial, alkali treated and bleached coir‐BAK composites show significant weight loss. More than 70% decrease in flexural strength is observed for alkali treated coir‐BAK composites after 35 days of soil burial. The loss of weight and the decrease of flexural strength of degraded composites are more or less directly related.  相似文献   

3.
In this study, the effects of fiber surface modification and hybrid fiber composition on the properties of the composites is presented. Jute fibers are cellulose rich (>65%) modified by alkali treatment, while the lignin rich (>40%) coconut coir fibers consist in creating quinones by oxidation with sodium chlorite in the lignin portions of fiber and react them with furfuryl alcohol (FA) to create a coating around the fiber more compatible with the epoxy resins used to prepare polymer composites. The maximum improvement on the properties was achieved for the hybrid composite containing the jute–coir content of 50 : 50. The tensile and flexural strength are recorded as 25 and 63 MPa at modified coir fiber content of 50 vol %, respectively, which are 78% and 61% higher than those obtained for unmodified fiber reinforced composites, i.e., tensile and flexural strength are 14 and 39 MPa, respectively. The reinforcement of the modified fiber was significantly enhanced the thermal stability of the composites. SEM features correlated satisfactorily with the mechanical properties of modified fiber reinforced hybrid composites. SEM analysis and water absorption measurements have confirmed the FA-grafting and shown a better compatibility at the interface between chemically modified fiber bundles and epoxy novolac resin. Hailwood–Horrobin model was used to predict the moisture sorption behavior of the hybrid composite systems. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
《Polymer Composites》2017,38(10):2212-2220
Sandwich composites based on coir fiber nonwoven mats as core material were manufactured by Vacuum Assisted Resin Transfer Molding technique. Mechanical and physical properties of produced coir/polyester and coir‐glass/polyester composites were assessed. Samples were evaluated according to their reinforcement contents, resin contents, areal density, and thickness. Tests on physical properties revealed that coir‐glass/polyester sandwich structure has the lowest values of thickness swelling, water absorption and moisture contents compared with coir/polyester composite. Mechanical tests such as tensile strength, open‐hole tensile strength, and flexural strength were also performed on all samples. Coir‐glass/polyester sandwich structure showed significant increase in tensile strength of 70 MPa compared with 8 MPa of coir/polyester composite. Introducing two skins of fiber glass woven roving to coir/polyester increased its flexural strength from 31.8 to 131.8 MPa for coir‐glass/polyester. POLYM. COMPOS., 38:2212–2220, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
采用碱、高锰酸钾及热对剑麻纤维布进行了表面处理,并由真空辅助树脂传递模塑成型(VARTM)工艺制备了剑麻纤维布增强不饱和聚酯树脂复合材料。通过对复合材料的力学性能及吸水性的测试,研究了不同剑麻纤维布表面处理对其不饱和聚酯树脂复合材料性能的影响。结果表明:经过碱处理,复合材料的拉伸、弯曲,冲击强度提高最大,可分别提高26.5%,16.5%和22.6%,吸水率降低了47.5%。对剑麻纤维布进行表面处理可使复合材料的界面性能得到改善,力学性能提高,吸水性降低。  相似文献   

6.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
This paper reports the effect of chemical treatment on the mechanical properties of a natural fiber, isora, as reinforcement in unsaturated polyester resin. Isora fiber is separated from the bark of the Helicteres isora plant by a retting process. The short isora fiber surface was modified chemically by acetylation, benzoylation, silane and triton treatments to bring about improved interfacial interaction between the fiber and the polyester matrix. The modified surfaces were characterized by IR spectroscopy and SEM. The SEM studies were carried out to investigate the fiber surface morphology, fiber pull-out and fiber-polyester interface bonding. They showed the changes occuring on the fiber surface during chemical treatment. Properties like tensile strength, flexural strength and impact strength have been studied. The chemical modification of fiber improved fiber/matrix interaction as evidenced by the enhanced tensile and flexural properties. The lower impact properties of the composites, except triton-treated fiber composite, further point to the improved fiber/matrix adhesion, compared to the untreated fiber composites.  相似文献   

8.
Pineapple leaf fiber (PALF) which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. The present study investigated the tensile, flexural, and impact behavior of PALF-reinforced polyester composites as a function of fiber loading, fiber length, and fiber surface modification. The tensile strength and Young's modulus of the composites were found to increase with fiber content in accordance with the rule of mixtures. The elongation at break of the composites exhibits an increase by the introduction of fiber. The mechanical properties are optimum at a fiber length of 30 mm. The flexural stiffness and flexural strength of the composites with a 30% fiber weight fraction are 2.76 GPa and 80.2 MPa, respectively. The specific flexural stiffness of the composite is about 2.3 times greater than that of neat polyester resin. The work of fracture (impact strength) of the composite with 30% fiber content was found to be 24 kJ m−2. Significant improvement in the tensile strength was observed for composites with silane A172-treated fibers. Scanning electron microscopic studies were carried out to understand the fiber-matrix adhesion, fiber breakage, and failure topography. The PALF polyester composites possess superior mechanical properties compared to other cellulose-based natural fiber composites. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1739–1748, 1997  相似文献   

9.
Fiber reinforced polymer composites has been used in a variety of application because of their many advantages such as relatively low cost of production, easy to fabricate, and superior strength compare to neat polymer resins. Reinforcement in polymer is either synthetic or natural. Synthetic fiber such as glass, carbon, etc. has high specific strength but their fields of application are limited due to higher cost of production. Recently there is an increase interest in natural composites which are made by reinforcement of natural fiber. In this connection, an investigation has been carried out to make better utilization of coconut coir fiber for making value added products. The objective of the present research work is to study the physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. The effect of fiber loading and length on mechanical properties like tensile strength, flexural strength, and hardness of composites is studied. The experimental results reveal that the maximum strength properties is observed for the composite with 10 wt% fiber loading at 15 mm length. The maximum flexural strength of 63 MPa is observed for composites with 10 wt% fiber loading at 15 mm fiber length. Similarly, the maximum hardness value of 21.3 Hv is obtained for composites with 10 wt% fiber loading at 20 mm fiber length. Also, the surface morphology of fractured surfaces after tensile testing is examined using scanning electron microscope (SEM). POLYM. COMPOS., 35:925–930, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
This study examined the dynamic mechanical properties of sisal fiber reinforced unsaturated polyester (UP) toughened epoxy nanocomposites. The chemical structures changes in Epoxy, UP and UP toughened epoxy (Epoxy/UP) systems were characterized by Proton Nuclear magnetic resonance (1HNMR) spectroscopy. The morphological alterations of the nanocomposites were analyzed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The untreated, chemically treated fibers, nanoclays, and the fiber reinforced Epoxy/UP nanocomposites were confirmed by FTIR spectrometer. The obtained mechanical results showed that alkali‐silane treated fibers improve the tensile strength (96%) and flexural strength (60%) of the Epoxy/UP nanocomposite than that of Epoxy/UP blend due to the strong interfacial bonding between the sisal fiber and matrix. The fracture toughness (KIC) and fracture energy (GIC) of treated sisal fiber reinforced DGEBA/UP/C30B nanocomposites found to be higher than that of untreated sisal fiber nanocomposites. The dynamic mechanical analysis (DMA) reveals that the fiber reinforced Epoxy/UP nanocomposites contains 30 wt% treated fiber and 1 wt% nanoclays, exhibits the highest storage modulus and better glass transition temperature (Tg) among the other kind of systems. The surface morphology of the fibers, fractured surface of the resins and composites were confirmed by scanning electron microscope (SEM). POLYM. COMPOS., 37:2832–2846, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
This work is aimed at determining the possibility of using crab carapace materials as reinforcing fillers in the coir fiber reinforced polyester composite. The sample preparation was carried out with three levels of fiber length (10, 30, & 50 mm), fiber weight content (10, 25, and 40%), and additive weight content (2, 4, and 6%). The composite sheets were prepared by impregnating crab carapace additive obtained from crab shell with coir fiber reinforced polyester composite using compression molding machine. The tensile, flexural, and impact strength of the composites were determined as per ASTM standards and regression models were developed to predict the mechanical behaviors of the composites using statistical technique. The fabrication parameters considered in this investigation has significantly contributed toward the mechanical properties of the composites. The developed regression models were optimized to obtain the maximum values of mechanical properties using single objective genetic algorithm and multiobjective lexicographic method in this investigation. POLYM. COMPOS., 37:844–853, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
The use of woven betel palm and kenaf lignocellulosic fibers as a reinforcing phase in unsaturated polyester was reported. The morphology, physical properties, and mechanical properties of the natural fibers and resulting woven composites were evaluated. Kenaf fibers exhibit higher tensile properties than betel palm fibers due to the higher amount of cellulose content. From the morphology observation, it is found that the alkaline treatment of the fibers effectively clean the fiber surface and increase the fiber surface roughness. Comparison between treated and untreated woven betel palm and kenaf composites at 7 vol% of fiber content was carried out. Interestingly, untreated woven kenaf composites exhibit comparable flexural strength with those of untreated woven betel palm composites. However, untreated kenaf composites exhibit superior flexural modulus to those of betel palm composites. In general, mechanical properties of the woven composites made from alkali-treated fibers were superior to the untreated fibers.  相似文献   

13.
Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X‐ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite expanded from 1.25 nm to 4.5 nm, indicating intercalation. Glass transition values of these composites increased from 72°C, in the unfilled unsaturated polyester, to 86°C in the composite with 10% organically modified montmorillonite. From Scanning Electron Microscopy, it is seen that the degree of intercalation/exfoliation of the modified montmorillonite is higher than in the unmodified one. The mechanical properties also supported these findings, since in general, the tensile modulus, tensile strength, flexural modulus, flexural strength and impact strength of the composites with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. The tensile modulus, tensile strength, flexural modulus and flexural strength values showed a maximum, whereas the impact strength exhibited a minimum at approximately 3–5 wt% modified montmorillonite content. These results imply that the level of exfoliation may also exhibit a maximum with respect to the modified montmorillonite content. The level of improvement in the mechanical properties was substantial. Adding only 3 wt% organically modified clay improved the flexural modulus of unsaturated polyester by 35%. The tensile modulus of unsaturated polyester was also improved by 17% at 5 wt% of organically modified clay loading.  相似文献   

14.
采用硅烷偶联剂(A-174)偶联、高锰酸钾接枝和乙酰化包覆等3种方法对香蕉纤维进行表面改性,制备了改性香蕉纤维增强环氧树脂复合材料,测试其拉伸、弯曲、压缩、冲击等力学性能。结果表明,偶联、接枝、包覆等表面改性均能明显改善香蕉纤维与基体树脂的相容性,提高复合材料的力学性能,其中偶联改性的效果最好。当改性香蕉纤维含量为10wt%时,与未改性的香蕉纤维比较,复合材料的拉伸强度、弯曲强度、压缩强度分别提高了1.8、1.0、2.6倍;随着纤维含量的增加,复合材料的力学性能明显提高。  相似文献   

15.
Betel nut leaf fiber (BNLF) is a new finding as cellulosic filler for polymer composites. Its main constituents are 75% α‐cellulose, 12% hemicelluloses, 10% lignin, and 3% others matter, viscosity average molecular weight 132,000 and degree of crystallinity 70%. In the present work, BNLF reinforced polypropylene (PP) composites were prepared using heat press molding method. 5–20 wt% short length fiber is taken for getting benefits of easy manufacturing and the fiber was chemically treated with NaOH, dicumyl peroxide (DCP), and maleic anhydride‐modified PP (MAPP) to promote the interfacial bond with PP. The extent of modification of fiber was assessed on the basis of morphology, bulk density, moisture absorption, thermal, and mechanical properties of untreated fiber, treated fiber, and their reinforcing PP composites. The tensile and flexural strength of composites increase with the increase of fiber loading up to 10 and 20 wt%, respectively. It was also observed that Young's modulus and flexural modulus increase with fiber loading. The thermal degradation behavior of resulting composites was investigated. Among the various treated fibers, MAPP‐treated fiber composite showed best interfacial interactions as well as mechanical and thermal properties. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
苎麻落麻的表面处理及其复合材料的性能研究   总被引:5,自引:0,他引:5  
采用甲基丙烯酸甲酯、丙烯腈接枝,硅烷偶联剂(A-151)偶联,聚氯乙烯(PVC)包覆等方法对苎麻落麻纤维进行表面处理;测试了处理前后落麻纤维的吸水率、单丝强度及其与环氧树脂(EP)、酚醛树脂(PF)和不饱和聚酯(UP)等的接触角;观察了偶联和包覆后落麻纤维的表面状况;选取偶联和包覆后的落麻纤维制备了UP/落麻毡和PP/落麻纤维复合材料,测试了其拉伸和弯曲性能并观察了处理前后复合材料的拉伸断面形貌。结果表明,接枝、偶联和包覆不仅降低了落麻纤维的吸水速率。而且也降低了平衡吸水量;接枝对落麻纤维单丝强度影响最大,偶联次之,包覆最小;接枝、偶联和包覆均能大幅度改善落麻纤维与EP、PF和UP的浸润性;偶联和包覆后的落麻纤维表面都比处理前粗糙;偶联使UP/落麻毡复合材料的拉伸强度、拉伸弹性模量提高了21%,弯曲强度提高了34%,弯曲弹性模量提高了40%,包覆使PP/落麻纤维复合材料的拉伸、弯曲强度提高了20%左右。  相似文献   

17.
雷文  杨涛  任超 《中国塑料》2006,20(12):23-27
研究了不饱和聚酯树脂(UP树脂)/苎麻布/碱式硫酸镁晶须复合材料的力学性能,探讨了苎麻布、晶须加入量对复合材料力学性能及热稳定性的影响,分析了复合材料的冲击断裂形貌。研究表明:当复合材料中苎麻布的质量恒定为UP树脂质量的7%时,增加晶须的含量,复合材料的弯曲模量及热稳定性随之增加,弯曲强度逐渐下降,拉伸强度及冲击强度先增加而后降低,当晶须加入量为10%时,拉伸强度及冲击强度均达到最大值,分别为30.16MP8和6.07kJ/m^2;当复合材料中晶须的质量恒定为UP树脂质量的10%时,增加复合材料中苎麻布的含量,复合材料的力学性能均随之增加,但热稳定性却下降。UP树脂/苎麻布/晶须复合材料的断面既有晶须裸露,又有卷曲的苎麻纤维分布,但苎麻布对冲击强度的贡献更突出。  相似文献   

18.
采用注塑成型法制备了生物降解黄麻短纤维增强PLA复合材料,通过力学性能测试及SEM,探讨了碱处理、碱和硅烷偶联剂KH550同时处理对复合材料结构和性能的影响。结果表明:两种处理方法均能够增加黄麻纤维的表面粗糙度,但碱和偶联剂KH550同时处理的效果要优于碱处理,且KH550改善了黄麻短纤维与PLA树脂之间的界面黏结性能提,高了黄麻/PLA复合材料的拉伸强度和弯曲强度。  相似文献   

19.
A systematic study was carried out to investigate the effect of alkali treatment and nanoclay on thermomechanical properties of jute fabric reinforced polyester composites (JPC) fabricated by the vacuum‐assisted resin transfer molding (VARTM) process. Using mechanical mixing and sonication process, 1% and 2% by weight montmorillonite K10 nanoclay were dispersed into B‐440 premium polyester resin to fabricate jute fabric reinforced polyester nanocomposites. The average fiber volume was determined to be around 40% and void fraction was reduced due to the surface treatment as well as nanoclay infusion in these biocomposites. Dynamic mechanical analysis (DMA) revealed enhancement of dynamic elastic/plastic responses and glass transition temperature (Tg) in treated jute polyester composites (TJPC) and nanoclay infused TJPC compared with those of untreated jute polyester composites (UTJPC). Alkali treatment and nanoclay infusion also resulted in enhancement of mechanical properties of JPC. The maximum flexural, compression, and interlaminar shear strength (ILSS) properties were found in the 1 wt % nanoclay infused TJPC. Fourier transform‐infrared spectroscopy (FT‐IR) revealed strong interaction between the organoclay and polyester that resulted in enhanced thermomechanical properties in the composites. Lower water absorption was also observed due to surface treatment and nanoclay infusion in the TJPC. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The development of high performance composites from a cheap natural fiber, jute, as reinforcement is particularly significant from an economic point of view. In this work, jute fiber-unsaturated polyester(GP) composites having appreciable mechanical properties were prepared by using solution impregnation and hot curing methods. Both unbleached (control) and bleached jute slivers with various percentages of fiber loadings were used to prepare the composites and were named JPH (C) i.e., Jute Polyester Hot Curing (control), and JPH (B) i.e., Jute Polyester Hot Curing (bleached), respectively. Mechanical properties such as tensile and flexural strain, toughness, and moduli of both the grades have been compared. Composites having 60 wt% of jute fiber yielded the best results. JPH (B) showed much better flexural properties than JPH (C), although the tensile properties of the latter were better. The inter-laminar shear strength (ILSS) of the JPH (B) was found to be higher than JPH (C). The nature of fiber-resin bonding was studied from scanning electron micrographs of the specimens subjected to tensile and flexural fracture. Dynamic mechanical properties were found to be very high, superior even to those of glass fiber reinforced composites. The flexural storage modulus was found to be 12.3 GPa at 30°C and to decrease slowly with temperature. The major finding in this work is the attainment of high mechanical properties of composite specimens with 60 wt %fiber loading. On a weight and cost basis, bleached jute fibres were found to be better reinforcements than other fibers with usual surface modification by coating or grafting processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号