首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a direct adaptive fuzzy robust control approach is proposed for single input and single output (SISO) strict-feedback nonlinear systems with nonlinear uncertainties, unmodeled dynamics and dynamical disturbances. No prior knowledge of the boundary of the nonlinear uncertainties is required. Fuzzy logic systems are used to approximate the intermediate stabilizing functions, and a stable direct adaptive fuzzy backstepping robust control approach is developed by combining the backstepping technique with the fuzzy adaptive control theory. The stability of the closed-loop system and the convergence of the system output are proved based on the small-gain theorem. Simulation studies are conducted to illustrate the effectiveness of the proposed approach.  相似文献   

2.
Controlling non-affine non-linear systems is a challenging problem in control theory. In this paper, we consider adaptive neural control of a completely non-affine pure-feedback system using radial basis function (RBF) neural networks (NN). An ISS-modular approach is presented by combining adaptive neural design with the backstepping method, input-to-state stability (ISS) analysis and the small-gain theorem. The difficulty in controlling the non-affine pure-feedback system is overcome by achieving the so-called “ISS-modularity” of the controller-estimator. Specifically, a neural controller is designed to achieve ISS for the state error subsystem with respect to the neural weight estimation errors, and a neural weight estimator is designed to achieve ISS for the weight estimation subsystem with respect to the system state errors. The stability of the entire closed-loop system is guaranteed by the small-gain theorem. The ISS-modular approach provides an effective way for controlling non-affine non-linear systems. Simulation studies are included to demonstrate the effectiveness of the proposed approach.  相似文献   

3.
A new version of the small-gain theorem is presented for nonlinear finite dimensional systems. The result provides conditions for global asymptotic stability under relaxed assumptions, in particular the two interconnected subsystems need not be input-to-state stable in open loop.  相似文献   

4.
This paper proposes an adaptive critic tracking control design for a class of nonlinear systems using fuzzy basis function networks (FBFNs). The key component of the adaptive critic controller is the FBFN, which implements an associative learning network (ALN) to approximate unknown nonlinear system functions, and an adaptive critic network (ACN) to generate the internal reinforcement learning signal to tune the ALN. Another important component, the reinforcement learning signal generator, requires the solution of a linear matrix inequality (LMI), which should also be satisfied to ensure stability. Furthermore, the robust control technique can easily reject the effects of the approximation errors of the FBFN and external disturbances. Unlike traditional adaptive critic controllers that learn from trial-and-error interactions, the proposed on-line tuning algorithm for ALN and ACN is derived from Lyapunov theory, thereby significantly shortening the learning time. Simulation results of a cart-pole system demonstrate the effectiveness of the proposed FBFN-based adaptive critic controller.  相似文献   

5.
This article considers the adaptive robust control of a class of single-input-single-output nonlinear systems in semi-strict feedback form using radial basis function (RBF) networks. It is well known that the standard backstepping design may suffer from “explosion of terms”. To overcome this problem, the recently developed dynamic surface control technique which employs a first-order low-pass filter at each step of the backstepping design procedure is generalized to the nonlinear system under study. Our attention is paid to achieve guaranteed transient performance of the adaptive controller. At each step of design, a feedback controller strengthened by nonlinear damping terms to counteract nonlinear uncertainties is designed to guarantee input-to-state practical stability of the corresponding subsystem, and then parameter adaptations are introduced to reduce the ultimate error bound. Furthermore, for the output trajectory tracking problem, it is recommended to adopt the partial adaptation policy to reduce the computational burden due to “curse of dimension” of the RBF networks. Finally, numerical examples are included to verify the results of theoretical analysis.  相似文献   

6.
Adaptive backstepping controller design using stochastic small-gain theorem   总被引:1,自引:0,他引:1  
A more general class of stochastic nonlinear systems with unmodeled dynamics and uncertain nonlinear functions are considered in this paper. With the concept of input-to-state practical stability (ISpS) and nonlinear small-gain theorem being extended to stochastic case, by combining stochastic small-gain theorem with backstepping design technique, an adaptive output-feedback controller is proposed. It is shown that the closed-loop system is practically stable in probability. A simulation example demonstrates the control scheme.  相似文献   

7.
In this paper, an indirect adaptive fuzzy control scheme is presented for a class of multi-input and multi-output (MIMO) nonlinear systems whose dynamics are poorly understood. Within this scheme, fuzzy systems are employed to approximate the plant’s unknown dynamics. In order to overcome the controller singularity problem, the estimated gain matrix is decomposed into the product of one diagonal matrix and two orthogonal matrices, a robustifying control term is used to compensate for the lumped errors, and all parameter adaptive laws and robustifying control term are derived based on Lyapunov stability analysis. The proposed scheme guarantees that all the signals in the resulting closed-loop system are uniformly ultimately bounded (UUB). Moreover, the tracking errors can be made small enough if the designed parameter is chosen to be sufficiently large. A simulation example is used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

8.
This paper deals with the synthesis of a new robust adaptive fuzzy control for a class of nonlinear and disturbed single-input single-output (SISO) systems. To attenuate the effect of both of the approximation errors and the external disturbances to a prescribed level, two signals are added to the indirect adaptive fuzzy control law: the first deduced from a fuzzy system allows approximation errors and external disturbances to eliminated; the second signal deduced from the Riccati equation attenuates the effect of the residual errors to a prescribed level. To illustrate the efficiency of the proposed approach, a simulation example is presented.  相似文献   

9.
Input-to-state stability of switched systems and switching adaptive control   总被引:1,自引:0,他引:1  
In this paper we prove that a switched nonlinear system has several useful input-to-state stable (ISS)-type properties under average dwell-time switching signals if each constituent dynamical system is ISS. This extends available results for switched linear systems. We apply our result to stabilization of uncertain nonlinear systems via switching supervisory control, and show that the plant states can be kept bounded in the presence of bounded disturbances when the candidate controllers provide ISS properties with respect to the estimation errors. Detailed illustrative examples are included.  相似文献   

10.
Direct adaptive fuzzy control of nonlinear strict-feedback systems   总被引:8,自引:0,他引:8  
This paper focuses on adaptive fuzzy tracking control for a class of uncertain single-input /single-output nonlinear strict-feedback systems. Fuzzy logic systems are directly used to approximate unknown and desired control signals and a novel direct adaptive fuzzy tracking controller is constructed via backstepping. The proposed adaptive fuzzy controller guarantees that the output of the closed-loop system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. A main advantage of the proposed controller is that it contains only one adaptive parameter that needs to be updated online. Finally, an example is used to show the effectiveness of the proposed approach.  相似文献   

11.
Zhong-Ping  Yuandan  Yuan   《Automatica》2004,40(12):2129-2136
We derive in this work a local nonlinear small-gain theorem in the framework of input-to-state stability for discrete time systems. Our primary objective is to show that, as in the continuous-time context, these discrete-time nonlinear small-gain theorems are very effective in stability analysis and synthesis for various classes of discrete-time control systems. Two converse Lyapunov theorems for discrete exponential stability are developed to assist these applications. New results in stability and stabilization presented in this paper are significant extensions of previous work by other authors (IEEE Trans. Automat. Control 38 (1993) 1398; 39 (1994) 2340; 33 (1988) 1082).  相似文献   

12.
In this paper, a novel robust adaptive fuzzy variable structure control (RAFVSC) scheme is proposed for a class of uncertain nonlinear systems. The uncertain nonlinear system and gain functions originating from modeling errors and external disturbances are all unstructured (or non-repeatable), state-dependent and completely unknown. The Takagi–Sugeno type fuzzy logic systems are used to approximate uncertain functions in the systems and the RAFVSC is designed by use of the input-to-state stability (ISS) approach and small gain theorem. In the algorithm, there are three advantages which are that the asymptotic stability of adaptive control in the presence of unstructured uncertainties can be guaranteed, the possible controller singularity problem in some of existing adaptive control schemes using feedback linearization techniques can be removed and the adaptive mechanism with minimal learning parameterizations can be achieved. The performance and effectiveness of the proposed methods are discussed and illustrated with two simulation examples.  相似文献   

13.
In this paper, an adaptive control scheme, based on fuzzy logic systems, for pH control is addressed. For implementation of the proposed scheme no composition measurement is required. Stability of the closed-loop system is established and it is shown that the solution of the closed-loop system is uniformly ultimately bounded and under a certain condition, asymptotical stability is achieved. Effectiveness of the proposed controller is tested through simulation and experimental studies. Results indicate that the proposed controller has good performances in set-point tracking and load rejection and much better than that of a tuned PI controller.  相似文献   

14.
This article presents a direct adaptive fuzzy control scheme for a class of uncertain continuous-time multi-input multi-output nonlinear (MIMO) dynamic systems. Within this scheme, fuzzy systems are employed to approximate an unknown ideal controller that can achieve control objectives. The adjustable parameters of the used fuzzy systems are updated using a gradient descent algorithm that is designed to minimize the error between the unknown ideal controller and the fuzzy controller. The stability analysis of the closed-loop system is performed using a Lyapunov approach. In particular, it is shown that the tracking errors are bounded and converge to a neighborhood of the origin. Simulations performed on a two-link robot manipulator illustrate the approach and exhibit its performance.  相似文献   

15.
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.  相似文献   

16.
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.  相似文献   

17.
This paper presents an improved observer-based indirect adaptive fuzzy control scheme for multiinput-multioutput (MIMO) nonlinear time-delay systems.The control scheme synthesizes adaptive fuzzy control with adaptive fuzzy identification.An observer is designed to observe the system state,and an identifier is developed to identify the unknown parts of the system.The update laws for parameters utilize two types of errors in the adaptive time-delay fuzzy logic systems,the observation error and the identification error.Performance analysis proves the superiority of the update laws in terms of faster and improved tracking and parameter convergence.Simulation results of two-link manipulator demonstrate the effectiveness of the improved control scheme.  相似文献   

18.
非线性不确定系统的直接自适应输出反馈模糊控制   总被引:2,自引:0,他引:2  
王涛  佟绍成 《控制与决策》2003,18(4):445-448
针对一类单输入单输出非线性不确定系统,基于状态观测器并结合自适应模糊系统和滑模控制,提出一种稳定的直接自适应模糊输出反馈控制算法。该算法不需要系统状态可测的条件,并能保证闭环系统稳定。仿真结果表明了该方法的有效性。  相似文献   

19.
具有未知非线性死区的自适应模糊控制   总被引:2,自引:0,他引:2  
基于滑模控制原理,利用模糊系统的逼近能力,提出一种自适应模糊控制方法.该方法提出一种简化非线性死区输入模型,取消了非线性死区输入模型的倾斜度相等以及死区边界对称的条件,还取消了非线性死区输入模型各种参数已知的条件.该方法通过引入逼近误差的自适应补偿项来消除建模误差和参数估计误差的影响.理论分析证明了闭环系统是半全局一致终结有界,跟踪误差收敛到零.仿真结果表明了该方案的有效性.  相似文献   

20.
基于观测器的非线性互连系统的自适应模糊控制   总被引:1,自引:0,他引:1  
针对一类不确定非线性MIMO互连系统,提出一种自适应模糊控制算法.通过设计观测器来估计系统的状态,因此不要求假设系统的状态是可测的.给出的自适应律只对不确定界进行在线调节,从而大大减轻了在线计算负担.该算法能够保证闭环系统的所有信号是一致有界的,并且跟踪误差指数收敛到一个小的零邻域内.仿真结果表明了算法的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号