首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed measurements of front- and back-channel characteristics in advanced SOI MOSFETs (ultrathin Si film, high-kappa, metal gate, and selective epitaxy of source/drain) are used to reveal and compare the transport properties at the corresponding Si/high- kappa (HfO2 or HfSiON) and Si/SiO2 interfaces. Low-temperature operation magnifies the difference between these two interfaces in terms of carrier mobility, threshold voltage, and subthreshold swing. As compared with Si/SiO2, the low-field mobility is lower at the Si/high-kappa interface and increases less rapidly at low temperature, reflecting additional scattering mechanisms governed by high-kappa and neutral defects.  相似文献   

2.
Long and short buried-channel $hbox{In}_{0.7}hbox{Ga}_{0.3}hbox{As}$ MOSFETs with and without $alpha$-Si passivation are demonstrated. Devices with $alpha$-Si passivation show much higher transconductance and an effective peak mobility of 3810 $hbox{cm}^{2}/ hbox{V} cdot hbox{s}$. Short-channel MOSFETs with a gate length of 160 nm display a current of 825 $muhbox{A}/muhbox{m}$ at $V_{g} - V_{t} = hbox{1.6} hbox{V}$ and peak transconductance of 715 $muhbox{S}/muhbox{m}$. In addition, the virtual source velocity extracted from the short-channel devices is 1.4–1.7 times higher than that of Si MOSFETs. These results indicate that the high-performance $hbox{In}_{0.7}hbox{Ga}_{0.3} hbox{As}$-channel MOSFETs passivated by an $alpha$ -Si layer are promising candidates for advanced post-Si CMOS applications.   相似文献   

3.
We report Ir/TiO2/TaN metal-insulator-metal capacitors processed at only 300degC, which show a capacitance density of 28 fF/mum2 and a leakage current of 3 times 10-8 (25degC) or 6 times 10-7 (125degC) A/cm2 at -1 V. This performance is due to the combined effects of 300degC nanocrystallized high-kappa TiO2, a high conduction band offset, and high work-function upper electrode. These devices show potential for integration in future very-large-scale-integration technologies.  相似文献   

4.
In this letter, we demonstrate the record small-signal performance from N-polar GaN-based metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using a GaN spacer structure with an AlN barrier to reduce alloy scattering. High Si doping in GaN without excessive surface roughening has been achieved using a digital doping scheme. A low ohmic contact resistance of 0.16 $Omega cdot hbox{mm}$ was measured. Submicrometer gates were fabricated by electron-beam lithography using a triple-layer resist process. $f_{T}$ and $f_{rm MAX}$ of 47 and 81 GHz, respectively, were obtained for the 150-nm-gate-length device. Further analysis has been done to understand the effect of access resistance on the high-frequency performance, defining a pathway for getting a higher gain and thus achieving a better high-frequency performance from N-polar GaN-based HEMTs.   相似文献   

5.
The time, temperature, and oxide-field dependence of negative-bias temperature instability is studied in $hbox{HfO}_{2}/hbox{TiN}$, $ hbox{HfSiO}_{x}/hbox{TiN}$, and SiON/poly-Si p-MOSFETs using ultrafast on-the-fly $I_{rm DLIN}$ technique capable of providing measured degradation from very short (approximately microseconds) to long stress time. Similar to rapid thermal nitrided oxide (RTNO) SiON, $hbox{HfO}_{2}$ devices show very high temperature-independent degradation at short (submilliseconds) stress time, not observed for plasma nitrided oxide (PNO) SiON and $hbox{HfSiO}_{x}$ devices. $hbox{HfSiO}_{x}$ shows lower overall degradation, higher long-time power-law exponent, field acceleration, and temperature activation as compared to $hbox{HfO}_{2}$, which are similar to the differences between PNO and RTNO SiON devices, respectively. The difference between $ hbox{HfSiO}_{x}$ and $hbox{HfO}_{2}$ can be attributed to differences in N density in the $hbox{SiO}_{2}$ IL of these devices.   相似文献   

6.
In dc and ac practical applications of $hbox{MgB}_{2}$ superconducting wires, an important role is represented by the material sheath that has to provide, among other things, a suitable electrical and thermal stabilization. One way to obtain a large-enough amount of low-resistivity material into the conductor architecture is to use it as the external sheath. In this paper, we study ex situ multifilamentary $ hbox{MgB}_{2}$ wires fabricated with oxide-dispersion-strengthened copper (GlidCop) as the external sheath in order to reach a good compromise between critical current density and thermal properties. We prepared three GlidCop samples with different contents of dispersed submicroscopic $ hbox{Al}_{2}hbox{O}_{3}$ particles. We characterized the superconducting and thermal properties, and we showed that the good thermal conductivity, together with the good mechanical properties and a reasonable critical current density, makes the GlidCop composite wire a useful conductor for applications where high thermal conductivity is required at temperatures above 30 K, such as superconducting fault-current limiters.   相似文献   

7.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

8.
$hbox{SiO}_{2}/hbox{high-}kappa$ dielectric stack is a candidate for replacing the conventional $hbox{SiO}_{2}$-based dielectric stacks for future Flash memory cells. Electron traps in the high-$ kappa$ layer can limit the memory retention via the trap-assisted tunneling, and there is a pressing need for their characterization. A new two-pulse $C$$V$ measurement technique is developed in this letter, which, for the first time, allows us to probe the discharge of electron traps throughout the $hbox{SiO}_{2}/hbox{high-}kappa$ stack. It complements the charge pumping technique, which can only probe near-interface traps. It is demonstrated that a large number of electron traps, indeed, exist in the bulk of high-$kappa$ layer. Bulk electron traps also have different discharge characteristics from those near the $hbox{SiO}_{2}/hbox{high-}kappa$ interface.   相似文献   

9.
The electrical characteristics of germanium p-metal-oxide-semiconductor (p-MOS) capacitor and p-MOS field-effect transistor (FET) with a stack gate dielectric of HfO2/TaOxNy are investigated. Experimental results show that MOS devices exhibit much lower gate leakage current than MOS devices with only HfO2 as gate dielectric, good interface properties, good transistor characteristics, and about 1.7-fold hole-mobility enhancement as compared with conventional Si p-MOSFETs. These demonstrate that forming an ultrathin passivation layer of TaOxNy on germanium surface prior to deposition of high-k dielectrics can effectively suppress the growth of unstable GeOx, thus reducing interface states and increasing carrier mobility in the inversion channel of Ge-based transistors.  相似文献   

10.
GaN/AlN/AlGaN/GaN nanowire metal–insulator–semiconductor field-effect transistors (MISFETs) have been fabricated for the first time with submicrometer gate lengths. Their microwave performances were investigated. An intrinsic current-gain cutoff frequency $(F_{T})$ of 5 GHz as well as an intrinsic maximum available gain $(F_{rm MAX})$ cutoff frequency of 12 GHz have been obtained for the first time and associated with a gate length of 0.5 $muhbox{m}$. These results show the great potentiality of GaN-based nanowire FETs for microwave applications.   相似文献   

11.
In this letter, we report on measurements of carbon nanotube (CNT) field-effect transistors with high on/off ratio to be used as nonvolatile memory cells operating at room temperature. Thousands of memory devices have been realized using a complete in situ fabrication method. The self-aligned fabrication process allows large-scale production of CNT memory devices with high yield. The memory function is obtained by the threshold voltage shift due to the highly reproducible hysteresis in the transfer characteristics. The ratio of the current levels between a logical “1” and a “0” is about $hbox{10}^{6}$.   相似文献   

12.
Abstract-We report Al2O3Zln0.53Ga0.47As MOSFETs having both self-aligned in situ Mo source/drain ohmic contacts and self-aligned InAs source/drain n+ regions formed by MBE regrowth. The device epitaxial dimensions are small, as is required for 22-nm gate length MOSFETs; a 5-nm In0.53Ga0.47As channel with an In0.4sAl0.52As back confinement layer and the n++ source/drain junctions do not extend below the 5-nm channel. A device with 200-nm gate length showed ID = 0.95 mA/mum current density at VGS = 4.0 V and gm = 0.45 mS/mum peak transconductance at VDS = 2.0 V.  相似文献   

13.
Without sacrificing the on-current in the transfer characteristics, we have successfully reduced the off-current part by the optimal $hbox{N}_{2}hbox{O}$ plasma treatment to improve the on–off-current ratio in n-type titanium oxide $( hbox{TiO}_{rm x})$ active-channel thin-film transistors. While the high-power (275 W) $hbox{N}_{2}hbox{O}$ plasma treatment oxidizes the whole $hbox{TiO}_{rm x}$ channel and results in the reduction of both on- and off-current, the optimized low-power (150 W) process makes the selective oxidation of the top portion in the channel and reduces only the off-current significantly. Increase in on–off ratio by almost five orders of magnitude is achieved without change in on-current by using the presented method.   相似文献   

14.
A diode-end-pumped $Q$ -switched mode-locking $hbox{Nd:GdVO}_{4}$ laser operating at 1.34 $mu{hbox {m}}$ with an acousto-optical (AO) Q-switch in a compact V-type cavity was realized in our experiment for the first time. When the AO Q-switch repetition rate was 10 kHz, the maximum average output power of 750 mW and the pulse energy of 75 $muhbox{J}$ were obtained at the maximum incident pump power of 9 W. The mode-locking modulation depth of about 100% was obtained at certain pump power over the threshold. The mode-locked pulse inside in the $Q$-switched pulse had a repetition rate of 341 MHz, and its average pulsewidth was estimated to be about 350 ps. A developed rate equation model for the $Q$ -switched and mode-locked lasers with an AO Q-switch were proposed by using the hyperbolic secant functional methods. The results of numerical calculations of the rate equations were in good agreement with the experimental results.   相似文献   

15.
Eigendecomposition represents one computationally efficient approach for dealing with object detection and pose estimation, as well as other vision-based problems, and has been applied to sets of correlated images for this purpose. The major drawback in using eigendecomposition is the off line computational expense incurred by computing the desired subspace. This off line expense increases drastically as the number of correlated images becomes large (which is the case when doing fully general 3-D pose estimation). Previous work has shown that for data correlated on S 1 , Fourier analysis can help reduce the computational burden of this off line expense. This paper presents a method for extending this technique to data correlated on S 2 as well as SO(3) by sampling the sphere appropriately. An algorithm is then developed for reducing the off line computational burden associated with computing the eigenspace by exploiting the spectral information of this spherical data set using spherical harmonics and Wigner-D functions. Experimental results are presented to compare the proposed algorithm to the true eigendecomposition, as well as assess the computational savings.  相似文献   

16.
This letter reports on the implementation of high carbon content and high phosphorous content $hbox{Si}_{1 - x}hbox{C}_{x}$ layers in the source and drain regions of n-type MOSFET in a 65-nm-node integration scheme. The layers were grown using a novel epitaxial process. It is shown that by implementing stressors with $x approx hbox{0.01}$ , nMOSFET device performance is enhanced by up to 10%, driving 880 $mu hbox{A}/muhbox{m}$ at 1-V $V_{rm DD}$. It is also demonstrated that the successful implementation of $hbox{Si}_{1 - x} hbox{C}_{x}$ relies on the careful choice of integration and epitaxial layer parameters. There is a clear impact of the postepitaxial implantation and thermal treatment on the retained substitutional C content $([C_{rm sub}])$. Furthermore, adding a Si capping layer on top of the $hbox{Si}_{1 - x}hbox{C}_{x}$, greatly improves upon the stressors' stability during the downstream processing and the silicide sheet resistance.   相似文献   

17.
We demonstrate the fabrication of high-performance $hbox{Ge}$ $hbox{Si}_{x}hbox{Ge}_{1 - x}$ core–shell nanowire (NW) field-effect transistors with highly doped source (S) and drain (D) and systematically investigate their scaling properties. Highly doped S and D regions are realized by low-energy boron implantation, which enables efficient carrier injection with a contact resistance much lower than the NW resistance. We extract key device parameters, such as intrinsic channel resistance, carrier mobility, effective channel length, and external contact resistance, as well as benchmark the device switching speed and on/off current ratio.   相似文献   

18.
A combined $k{hbox{-out-of-}}n$ :$F(G)$ & consecutive $k_{c}{hbox{-out-of-}}n{hbox{:}}F(G)$ system fails (functions) iff at least $k$ components fail (function), or at least $k_{c}$ consecutive components fail (function). These models involve two common failure criteria, and can be used in various situations depending on the actual failure criteria involving consecutive components, or all components. Explicit formulas for the reliabilities of these systems are obtained for Markov dependent components using the distribution theory of runs. Some numerical results are also presented.   相似文献   

19.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

20.
The effects of in situ O2 plasma treatment on device characteristics and reliability of metal-gate/high-k devices are investigated systematically. It was found that the O2 plasma treatment can be employed for mitigating the formation of a leakage path between the high-k dielectric and the capping nitride layer. It also did not change the threshold voltage (Vth), carrier mobility, or equivalent oxide thickness. Compared with the control samples, the O2 plasma-treated samples achieved a 20-times lower OFF-state current and enhanced hot-carrier-injection stress immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号