首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
利用模拟软件MEDICI对碳化硅混合PiN/Schottky二极管(MPS)的输运机理及伏安特性进行了模拟.输运机理的模拟结果表明MPS的工作原理是正向肖特基起主要作用,而反向时PN结使漏电流大大减小.伏安特性的模拟结果表明MPS的正向压降小,电流密度大,在2V正向偏压下达10-5A/μm,反向漏电流小,击穿电压高(2000V左右),可以通过改变肖特基和PN结的面积比来调整MPS的性能,与硅MPS、碳化硅PN结以及碳化硅肖特基二极管相比具有明显的优势,是理想的功率整流器.  相似文献   

2.
利用模拟软件MEDICI对碳化硅混合PiN/Schottky二极管(MPS)的输运机理及伏安特性进行了模拟.输运机理的模拟结果表明MPS的工作原理是正向肖特基起主要作用,而反向时PN结使漏电流大大减小.伏安特性的模拟结果表明MPS的正向压降小,电流密度大,在2V正向偏压下达10-5A/μm,反向漏电流小,击穿电压高(2000V左右),可以通过改变肖特基和PN结的面积比来调整MPS的性能,与硅MPS、碳化硅PN结以及碳化硅肖特基二极管相比具有明显的优势,是理想的功率整流器.  相似文献   

3.
硅PiN结构在工业产品中有多种应用,是多种二极管的基本结构。本文分析了该结构的雪崩击穿特性,推导得到一个适合于PiN结构的突变结雪崩击穿电压公式。该解析式能估算器件杂质分布为单边突变结、双边突变结和PiN结构的雪崩击穿电压,修正了以往解析式中i层宽度为零时,击穿电压为零的错误结论。该解析式对于PiN管的器件物理分析、工艺结构的优化和产品流水线的监控是有用的。  相似文献   

4.
对混合PiN/Schottky二极管(MPS)进行研究,首先对MPS二极管的工作原理进行了分析,通过对MPS二极管、肖特基二极管、PIN二极管的伏安特性进行模拟,结果表明MPS二极管正向压降小,电流密度大,反向漏电流小,是一种具有肖特基正向特性和PN结反向特性的新型整流器。可以通过改变肖特基和PN结的面积比来调整MPS二极管的性能,与肖特基二极管和PIN二极管相比具有明显的优势,是功率系统不可或缺的功率整流管。  相似文献   

5.
碳化硅(SiC)PiN二极管是应用在高压大功率整流领域中的一种重要的功率二极管。受SiC外延材料的载流子寿命限制以及常规SiC PiN二极管较低的阳极注入效率的影响,SiC PiN二极管的正向导通性能较差,这极大限制了其在高压大电流领域的应用。文章提出了一种带P型埋层的4H-SiC PiN二极管,较常规SiC PiN二极管增强了阳极区的少子注入效率,降低了器件的导通电阻,增大了正向电流。仿真结果表明,当正向偏压为5 V时,引入P型埋层的SiC PiN二极管的正向电流密度比常规SiC PiN二极管提升了52.8%。  相似文献   

6.
反向恢复特性是衡量混合肖特基/PiN(MPS)二极管开关性能最重要的参数之一。本文对6H-SiC基MPS二极管结构参数与反向恢复峰值电流、反向恢复电压之间的关系进行了数值模拟仿真,分析了器件关断过程中过剩少数载流子分布,以此就6HSiC基MPS器件结构参数对反向恢复特性的影响进行了研究。结果表明:结构参数P+区结深、P+区掺杂浓度的增加,或肖特基区占比的减小,均会引起反向恢复峰值电流、反向恢复峰值电压的增大。究其根本,是器件结构参数改变引起了漂移区下少数载流子发生产生、复合、抽运等一系列变化。综合考虑反向恢复峰值电流、反向恢复峰值电压与软恢复特性,得出6H-SiC基MPS最佳优化参数:P+结深为3.8~4.0μm,肖特基区的占比为48%~56%,P+掺杂浓度为5.0×1018/cm3。  相似文献   

7.
场限环终端结构可以有效提高击穿电压,因而被广泛应用于半导体功率器件.场限环中多个参数都影响PiN二极管主结的击穿能力.本文基于数值模拟软件建立PiN二极管的场限环终端仿真模型,并设计十道场限环作为终端结构.分别仿真场限环结深和漂移区掺杂浓度与主结的击穿电压的关系,得到结深和漂移区掺杂浓度与击穿电压的关系曲线.当漂移区掺...  相似文献   

8.
《现代显示》2012,(2):42-42
科锐公司日前宣布推出全新系列封装型二极管,在现有碳化硅肖特基二极管技术条件下,该系列二极管可提供业界最高的阻断电压。科锐1,700V Z-Rec肖特基二极管从根本上消除了硅PiN二极管替代品中存在的反向恢复损耗,  相似文献   

9.
混合pin/肖特基(MPS)二极管是广泛应用于电子电路中的快恢复功率器件,具有高击穿电压、快速开关和正向电流大等特性。对MPS二极管漂移区的少数载流子的特性进行了仿真分析。仿真结果表明,MPS二极管的p^+区向漂移区注入的少数载流子浓度随外加正向电压和pn结面积占元胞总面积比例的增大而增大。虽然漂移区的少数载流子改变了MPS二极管的工作模式,增大了电流,但是存储在漂移区的少数载流子增大了反向峰值电流和恢复时间,进而增大了功耗并降低了关断速度。折中考虑正向电流和反向恢复特性,可获得具有正向电流大、反向峰值电流小和反向恢复时间短的MPS二极管。  相似文献   

10.
自晶闸管和功率晶体管问世和应用以来,硅半导体器件在功率处理能力和开关频率方面不断改善,先后诞生了GTR、GTO、MOSFET和IGBT等现代电力电子器件,对电力电子系统缩小体积、降低成本起到了极其关键的作用。硅电力电子器件经过近60年的发展,性能已经趋近其理论极限,通过器件原理的创新、结构的改善及制造工艺的进步已经难以大幅度的提升其总体性能,制约未来电力电子技术进一步发展。碳化硅肖特基功率器件以其优良特性和结构与制造工艺优势成功实现了商业化。  相似文献   

11.
The electrical performance of silicon carbide (SiC) power diodes is evaluated and compared to that of commercially available silicon (Si) diodes in the voltage range from 600 V through 5000 V. The comparisons include the on-state characteristics, the reverse recovery characteristics, and power converter efficiency and electromagnetic interference (EMI). It is shown that a newly developed 1500-V SiC merged PiN Schottky (MPS) diode has significant performance advantages over Si diodes optimized for various voltages in the range of 600 V through 1500 V. It is also shown that a newly developed 5000 V SiC PiN diode has significant performance advantages over Si diodes optimized for various voltages in the range of 2000 V through 5000 V. In a test case power converter, replacing the best 600 V Si diodes available with the 1500 V SiC MPS diode results in an increase of power supply efficiency from 82% to 88% for switching at 186 kHz, and a reduction in EMI emissions  相似文献   

12.
Dynamic electrothermal circuit simulator models are developed for silicon carbide power diodes. The models accurately describe the temperature dependence of on-state characteristics and reverse-recovery switching waveforms. The models are verified for the temperature dependence of the on-state characteristics, and the di/dt, dv/dt, and temperature dependence of the reverse-recovery characteristics. The model results are presented for 1500 V SiC Merged PiN Schottky (MPS) diodes, 600 V Schottky diodes, and 5000 V SiC PiN diodes. The devices studied have current ratings from 0.25 A to 5 A and have different lifetimes resulting in different switching energy versus on-state voltage trade-offs. The devices are characterized using a previously reported test system specifically designed to emulate a wide range of application conditions by independently controlling the applied diode voltage, forward diode current, di/dt, and dv/dt at turn-off. A behavioral model of the test system is implemented to simulate and validate the models. The models are validated for a wide range of application conditions for which the diode could be used.  相似文献   

13.
SiC power Schottky and PiN diodes   总被引:3,自引:0,他引:3  
The present state of SiC power Schottky and PiN diodes are presented in this paper. The design, fabrication, and characterization of a 130 A Schottky diode, 4.9 kV Schottky diode, and an 8.6 kV 4H-SiC PiN diode, which are considered to be significant milestones in the development of high power SiC diodes, are described in detail. Design guidelines and practical issues for the realization of high-power SiC Schottky and PiN diodes are also presented. Experimental results on edge termination techniques applied to newly developed, extremely thick (e.g., 85 and 100 μm) 4H-SiC epitaxial layers show promising results. Switching and high-temperature measurements prove that SiC power diodes offer extremely low loss alternatives to conventional technologies and show the promise of demonstrating efficient power circuits. At sufficiently high on-state current densities, the on-state voltage drop of Schottky and PiN diodes have been shown to be comparable to those offered by conventional technologies  相似文献   

14.
This paper presents a study of the performance of high-voltage Si and 4H-SiC diodes in a DC-DC buck converter. Device operation in both hard- and zero-voltage switching conditions is presented with the help of measurements and two-dimensional (2-D) mixed device-circuit simulations. Experimental results show that SiC PiN diodes have a strong potential for use in high-speed high-voltage power electronics applications operating at high temperature. A combination of low excess carrier concentration and low carrier lifetime results in superior switching performance of the 4H-SiC diode over ultrafast Si diodes. Soft switching is shown to minimize the switching loss and allow operation at higher switching frequencies using Si diodes. The power loss of 4H-SiC diodes is dominated by conduction loss. Consequently, soft-switching techniques result in a marginal reduction in power loss. However, the low overall power loss implies that SiC diodes can be used at very high switching frequencies even in hard-switching configurations.  相似文献   

15.
This paper presents the design and fabrication of an etched implant junction termination extension(JTE) for high-voltage 4H-SiC PiN diodes. Unlike the conventional JTE structure, the proposed structure utilizes multiple etching steps to achieve the optimum JTE concentration range. The simulation results show that the etched implant JTE method can improve the blocking voltage of SiC PiN diodes and also provides broad process latitude for parameter variations, such as implantation dose and activation annealing condition. The fabricated SiC PiN diodes with the etched implant JTE exhibit a highest blocking voltage of 4.5 kV and the forward on-state voltage of 4.6 V at room temperature. These results are of interest for understanding the etched implant method in the fabrication of high-voltage power devices.  相似文献   

16.
与传统硅基功率二极管相比,碳化硅肖特基势垒二极管(SiC SBD)可提高开关频率并大幅减小开关损耗,同时有更高的耐压范围.设计并制作了具有场限环结终端和Ti肖特基接触的1.2 kV/30 A SiC SBD器件,研究了该SiC SBD在100~300℃时的反向恢复特性.实验结果表明,温度每上升100℃,SiC SBD反向电压峰值增幅为5%左右,而反向恢复电流与反向恢复时间受温度影响不大;温度每升高50℃,反向恢复损耗功率峰值降低5%.实验结果表明该SiCSBD在高温下能够稳定工作,且具有良好的反向恢复特性,适用于卫星、航空和航天探测、石油以及地热钻井探测等需要大功率、耐高温和高速器件的领域.  相似文献   

17.
碳化硅器件发展概述   总被引:1,自引:0,他引:1  
概要介绍了第三代半导体材料碳化硅(SiC)在高温、高频、大功率器件应用方面的优势,结合国际上SiC肖特基势垒二极管,PiN二极管和结势垒肖特基二极管的发展历史,介绍了SiC功率二极管的最新进展,同时对我国宽禁带半导体SiC器件的研究现状及发展方向做了概述及展望。  相似文献   

18.
In order to select the optimal device for a particular application, designers must carefully analyze the tradeoffs between competing devices. Recent progress in SiC power rectifiers has resulted in the demonstration of high-voltage PiN and Schottky barrier diodes (SBDs). With both technologies maturing, power electronics engineers will soon face the task of selecting between these two devices. Until recently, the choice was simple, since silicon SBDs are only available for relatively low voltage applications. The choice is not as clear when considering SiC diodes, and guidelines for determining the proper application of each are needed. The purpose of this paper is to provide such guidelines, based on an analysis of the most significant tradeoffs involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号