首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Fischer and Rabin proved in (Proceedings of the SIAM-AMS Symposium in Applied Mathematics, vol. 7, pp. 27–41, 1974) that the decision problem for Presburger Arithmetic has at least double exponential worst-case complexity (for deterministic and for nondeterministic Turing machines). In Kapovich et al. (J. Algebra 264(2):665–694, 2003) a theory of generic-case complexity was developed, where algorithmic problems are studied on “most” inputs instead of set of all inputs. A question rises about existing of more efficient (say, polynomial) generic algorithm deciding Presburger Arithmetic on a set of closed formulas of asymptotic density 1. We prove in this paper that there is not an exponential generic decision algorithm working correctly on an input set of asymptotic density exponentially converging to 1 (so-called strongly generic sets).  相似文献   

2.
The problem of maximization of the depth of penetration of rigid impactor into semi-infinite solid media (concrete shield) is investigated analytically and numerically using two-stage model and experimental data of Forrestal and Tzou (Int J Solids Struct 34(31–32):4127–4146, 1997). The shape of the axisymmetric rigid impactor has been taken as an unknown design variable. To solve the formulated optimization problem for nonadditive functional, we expressed the depth of penetration (DOP) under some isoperimetric constraints. We apply approaches based on analytical and qualitative variational methods and numerical optimization algorithm of global search. Basic attention for considered optimization problem was given to constraints on the mass of penetrated bodies, expressed by the volume in the case of penetrated solid body and by the surface area in the case of penetrated thin-walled rigid shell. As a result of performed investigation, based on two-term and three-term two stage models proposed by Forrestal et al. (Int J Impact Eng 15(4):396–405, 1994), Forrestal and Tzou (Int J Solids Struct 34(31–32):4127–4146, 1997) and effectively developed by Ben-Dor et al. (Comp Struct 56:243–248, 2002, Comput Struct 81(1):9–14, 2003a, Int J Solids Struct 40(17):4487–4500, 2003b, Mech Des Struct Mach 34(2): 139–156, 2006), we found analytical and numerical solutions and analyzed singularities of optimal forms.  相似文献   

3.
In 2003, Maurer et al. (IEEE Trans. Pattern Anal. Mach. Intell. 25:265–270, 2003) published a paper describing an algorithm that computes the exact distance transform in linear time (with respect to image size) for the rectangular binary images in the k-dimensional space ℝ k and distance measured with respect to L p -metric for 1≤p≤∞, which includes Euclidean distance L 2. In this paper we discuss this algorithm from theoretical and practical points of view. On the practical side, we concentrate on its Euclidean distance version, discuss the possible ways of implementing it as signed distance transform, and experimentally compare implemented algorithms. We also describe the parallelization of these algorithms and discuss the computational time savings associated with them. All these implementations will be made available as a part of the CAVASS software system developed and maintained in our group (Grevera et al. in J. Digit. Imaging 20:101–118, 2007). On the theoretical side, we prove that our version of the signed distance transform algorithm, GBDT, returns the exact value of the distance from the geometrically defined object boundary. We provide a complete proof (which was not given of Maurer et al. (IEEE Trans. Pattern Anal. Mach. Intell. 25:265–270, 2003) that all these algorithms work correctly for L p -metric with 1<p<∞. We also point out that the precise form of the algorithm from Maurer et al. (IEEE Trans. Pattern Anal. Mach. Intell. 25:265–270, 2003) is not well defined for L 1 and L metrics. In addition, we show that the algorithm can be used to find, in linear time, the exact value of the diameter of an object, that is, the largest possible distance between any two of its elements.  相似文献   

4.
While there exist efficient algorithms to slice sequential programs precisely, there are only two algorithms for precise slicing of concurrent interprocedural programs with recursive procedures (Krinke in Proc. ESEC/FSE’03, pp. 178–187, 2003; Nanda and Ramesh in ACM Toplas. 28(6):1088–1144, 2006). We present an empirical evaluation of both algorithms for Java. We demonstrate that both algorithms provide the same precision up to the model of concurrency in use and show that the concurrency model has strong impact on slice precision and computation costs. Furthermore, we extend both algorithms to support dynamic thread creation both in loops and recursion—a feature that the original algorithms could not fully handle. The worst case complexity of the algorithms being exponential, we developed several optimizations and compared these with each other and with algorithms that trade precision for speed. Finally, we show that one algorithm may produce incorrect slices and present a remedy.  相似文献   

5.
In this paper we introduce a minimax model unifying several classes of single facility planar center location problems. We assume that the transportation costs of the demand points to the serving facility are convex functions {Q i }, i=1,…,n, of the planar distance used. Moreover, these functions, when properly transformed, give rise to piecewise quadratic functions of the coordinates of the facility location. In the continuous case, using results on LP-type models by Clarkson (J. ACM 42:488–499, 1995), Matoušek et al. (Algorithmica 16:498–516, 1996), and the derandomization technique in Chazelle and Matoušek (J. Algorithms 21:579–597, 1996), we claim that the model is solvable deterministically in linear time. We also show that in the separable case, one can get a direct O(nlog n) deterministic algorithm, based on Dyer (Proceedings of the 8th ACM Symposium on Computational Geometry, 1992), to find an optimal solution. In the discrete case, where the location of the center (server) is restricted to some prespecified finite set, we introduce deterministic subquadratic algorithms based on the general parametric approach of Megiddo (J. ACM 30:852–865, 1983), and on properties of upper envelopes of collections of quadratic arcs. We apply our methods to solve and improve the complexity of a number of other location problems in the literature, and solve some new models in linear or subquadratic time complexity.  相似文献   

6.
We study properties of non-uniform reductions and related completeness notions. We strengthen several results of Hitchcock and Pavan (ICALP (1), Lecture Notes in Computer Science, vol. 4051, pp. 465–476, Springer, 2006) and give a trade-off between the amount of advice needed for a reduction and its honesty on NEXP. We construct an oracle relative to which this trade-off is optimal. We show, in a more systematic study of non-uniform reductions, among other things that non-uniformity can be removed at the cost of more queries. In line with Post’s program for complexity theory (Buhrman and Torenvliet in Bulletin of the EATCS 85, pp. 41–51, 2005) we connect such ‘uniformization’ properties to the separation of complexity classes.  相似文献   

7.
With the development in IT technology and with growing demands of users, a ubiquitous environment is being made. Because individual identification is important in ubiquitous environment, RFID technology would be used frequently. RFID is a radio frequency identification technology to replace bar code. The reader transmits query (request of user information) and tag-provides user information. RFID has various advantages, such as high speed identification rates, mass memory storages. However, eavesdropping is possible as well as a problem that user information is exposed (Juels et al. in Conference on Computer and Communications Security—ACM CCS, pp. 103–111, 2003; Ohkubo et al. in RFID Privacy Workshop 2003; Weis et al. in International Conference on Security in Pervasive Computing, pp. 201–212, 2003; Weis et al. in Cryptographic Hardware and Embedded Systems—CHES, pp. 454–469, 2002). Therefore, when off-line customer had visited bank for banking service, RNTS (RFID number ticket service) system provides both anonymity in customer identification and efficiency of banking service. In addition, RNTS system protects privacy of an off-line user visiting the bank and it is an efficient method offering service in order of arriving in the bank.  相似文献   

8.
We study the on-line minimum weighted bipartite matching problem in arbitrary metric spaces. Here, n not necessary disjoint points of a metric space M are given, and are to be matched on-line with n points of M revealed one by one. The cost of a matching is the sum of the distances of the matched points, and the goal is to find or approximate its minimum. The competitive ratio of the deterministic problem is known to be Θ(n), see (Kalyanasundaram, B., Pruhs, K. in J. Algorithms 14(3):478–488, 1993) and (Khuller, S., et al. in Theor. Comput. Sci. 127(2):255–267, 1994). It was conjectured in (Kalyanasundaram, B., Pruhs, K. in Lecture Notes in Computer Science, vol. 1442, pp. 268–280, 1998) that a randomized algorithm may perform better against an oblivious adversary, namely with an expected competitive ratio Θ(log n). We prove a slightly weaker result by showing a o(log 3 n) upper bound on the expected competitive ratio. As an application the same upper bound holds for the notoriously hard fire station problem, where M is the real line, see (Fuchs, B., et al. in Electonic Notes in Discrete Mathematics, vol. 13, 2003) and (Koutsoupias, E., Nanavati, A. in Lecture Notes in Computer Science, vol. 2909, pp. 179–191, 2004). The authors were partially supported by OTKA grants T034475 and T049398.  相似文献   

9.
We investigate the complexity of counting Eulerian tours (#ET) and its variations from two perspectives—the complexity of exact counting and the complexity w.r.t. approximation-preserving reductions (AP-reductions, Dyer et al., Algorithmica 38(3):471–500, 2004). We prove that #ET is #P-complete even for planar 4-regular graphs.  相似文献   

10.
We reformulate a class of non-linear stochastic optimal control problems introduced by Todorov (in Advances in Neural Information Processing Systems, vol. 19, pp. 1369–1376, 2007) as a Kullback-Leibler (KL) minimization problem. As a result, the optimal control computation reduces to an inference computation and approximate inference methods can be applied to efficiently compute approximate optimal controls. We show how this KL control theory contains the path integral control method as a special case. We provide an example of a block stacking task and a multi-agent cooperative game where we demonstrate how approximate inference can be successfully applied to instances that are too complex for exact computation. We discuss the relation of the KL control approach to other inference approaches to control.  相似文献   

11.
A classic result known as the speed-up theorem in machine-independent complexity theory shows that there exist some computable functions that do not have best programs for them (Blum in J. ACM 14(2):322–336, 1967 and J. ACM 18(2):290–305, 1971). In this paper we lift this result into type-2 computations. Although the speed-up phenomenon is essentially inherited from type-1 computations, we observe that a direct application of the original proof to our type-2 speed-up theorem is problematic because the oracle queries can interfere with the speed of the programs and hence the cancellation strategy used in the original proof is no longer correct at type-2. We also argue that a type-2 analog of the operator speed-up theorem (Meyer and Fischer in J. Symb. Log. 37:55–68, 1972) does not hold, which suggests that this curious speed-up phenomenon disappears in higher-typed computations beyond type-2. The result of this paper adds one more piece of evidence to support the general type-2 complexity theory under the framework proposed in Li (Proceedings of the Third International Conference on Theoretical Computer Science, pp. 471–484, 2004 and Proceedings of Computability in Europe: Logical Approach to Computational Barriers, pp. 182–192, 2006) and Li and Royer (On type-2 complexity classes: Preliminary report, pp. 123–138, 2001) as a reasonable setup.  相似文献   

12.
We study the complexity issues for Walrasian equilibrium in a special case of combinatorial auction, called single-minded auction, in which every participant is interested in only one subset of commodities. Chen et al. (J. Comput. Syst. Sci. 69(4): 675–687, 2004) showed that it is NP-hard to decide the existence of a Walrasian equilibrium for a single-minded auction and proposed a notion of approximate Walrasian equilibrium called relaxed Walrasian equilibrium. We show that every single-minded auction has a relaxed Walrasian equilibrium that satisfies at least two-thirds of the participants, proving a conjecture posed in Chen et al. (J. Comput. Syst. Sci. 69(4): 675–687, 2004). Motivated by practical considerations, we introduce another concept of approximate Walrasian equilibrium called weak Walrasian equilibrium. We show NP-completeness and hardness of approximation results for weak Walrasian equilibria. In search of positive results, we restrict our attention to the tollbooth problem (Guruswami et al. in Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 1164–1173, 2005), where every participant is interested in a single path in some underlying graph. We give a polynomial time algorithm to determine the existence of a Walrasian equilibrium and compute one (if it exists), when the graph is a tree. However, the problem is still NP-hard for general graphs.  相似文献   

13.
In this paper we provide the full spectral decomposition of the Multi-Class Lighthill Whitham Richards (MCLWR) traffic models described in (Wong et al. in Transp. Res. Part A 36:827–841, 2002; Benzoni-Gavage and Colombo in Eur. J. Appl. Math. 14:587–612, 2003). Even though the eigenvalues of these models can only be found numerically, the knowledge of the spectral structure allows the use of characteristic-based High Resolution Shock Capturing (HRSC) schemes. We compare the characteristic-based approach to the component-wise schemes used in (Zhang et al. in J. Comput. Phys. 191:639–659, 2003), and propose two strategies to minimize the oscillatory behavior that can be observed when using the component-wise approach.  相似文献   

14.
Borodin et al. (Algorithmica 37(4):295–326, 2003) gave a model of greedy-like algorithms for scheduling problems and Angelopoulos and Borodin (Algorithmica 40(4):271–291, 2004) extended their work to facility location and set cover problems. We generalize their model to include other optimization problems, and apply the generalized framework to graph problems. Our goal is to define an abstract model that captures the intrinsic power and limitations of greedy algorithms for various graph optimization problems, as Borodin et al. (Algorithmica 37(4):295–326, 2003) did for scheduling. We prove bounds on the approximation ratio achievable by such algorithms for basic graph problems such as shortest path, weighted vertex cover, Steiner tree, and independent set. For example, we show that, for the shortest path problem, no algorithm in the FIXED priority model can achieve any approximation ratio (even one dependent on the graph size), but the well-known Dijkstra’s algorithm is an optimal ADAPTIVE priority algorithm. We also prove that the approximation ratio for weighted vertex cover achievable by ADAPTIVE priority algorithms is exactly 2. Here, a new lower bound matches the known upper bounds (Johnson in J. Comput. Syst. Sci. 9(3):256–278, 1974). We give a number of other lower bounds for priority algorithms, as well as a new approximation algorithm for minimum Steiner tree problem with weights in the interval [1,2]. S. Davis’ research supported by NSF grants CCR-0098197, CCR-0313241, and CCR-0515332. Views expressed are not endorsed by the NSF. R. Impagliazzo’s research supported by NSF grant CCR-0098197, CCR-0313241, and CCR-0515332. Views expressed are not endorsed by the NSF. Some work done while at the Institute for Advanced Study, supported by the State of New Jersey.  相似文献   

15.
Weighted timed automata (WTA), introduced in Alur et al. (Proceedings of HSCC’01, LNCS, vol. 2034, pp. 49–62, Springer, Berlin, 2001), Behrmann et al. (Proceedings of HSCC’01, LNCS, vol. 2034, pp. 147–161, Springer, Berlin, 2001) are an extension of Alur and Dill (Theor. Comput. Sci. 126(2):183–235, 1994) timed automata, a widely accepted formalism for the modelling and verification of real time systems. Weighted timed automata extend timed automata by allowing costs on the locations and edges. There has been a lot of interest Bouyer et al. (Inf. Process. Lett. 98(5):188–194, 2006), Bouyer et al. (Log. Methods Comput. Sci. 4(2):9, 2008), Brihaye et al. (Proceedings of FORMATS/FTRTFT’04, LNCS, vol. 3253, pp. 277–292, Springer, Berlin, 2004), Brihaye et al. (Inf. Comput. 204(3):408–433, 2006) in studying the model checking problem of weighted timed automata. The properties of interest are written using logic weighted CTL (WCTL), an extension of CTL with costs. It has been shown Bouyer et al. (Log. Methods Comput. Sci. 4(2):9, 2008) that the problem of model checking WTAs with a single clock using WCTL with no external cost variables is decidable, while 3 clocks render the problem undecidable Bouyer et al. (Inf. Process. Lett. 98(5):188–194, 2006). The question of 2 clocks is open. In this paper, we introduce a subclass of weighted timed automata called weighted integer reset timed automata (WIRTA) and study the model checking problem. We give a clock reduction technique for WIRTA. Given a WIRTA A\mathcal{A} with n≥1 clocks, we show that a single clock WIRTA A¢\mathcal{A}' preserving the paths and costs of A\mathcal{A} can be obtained. This gives us the decidability of model checking WIRTA with n≥1 clocks and m≥1 costs using WCTL with no external cost variables. We then show that for a restricted version of WCTL with external cost variables, the model checking problem is undecidable for WIRTA with 3 stopwatch costs and 1 clock. Finally, we show that model checking WTA with 2 clocks and 1 stopwatch cost against WCTL with no external cost variables is undecidable, thereby answering a question that has remained long open.  相似文献   

16.
We offer evidence in the disproof of the continuity of the length of minimum inner spanning trees with respect to a parameter vector having a zero component. The continuity property is the key step of the proof of the conjecture in Du and Hwang (Proc. Nat. Acad. Sci. U.S.A. 87:9464–9466, 1990; Algorithmica 7(1):121–135, 1992). Therefore the Steiner ratio conjecture proposed by Gilbert-Pollak (SIAM J. Appl. Math. 16(1):1–29, 1968) has not been proved yet. The Steiner ratio of a round sphere has been discussed in Rubinstein and Weng (J. Comb. Optim. 1:67–78, 1997) by assuming the validity of the conjecture on a Euclidean plane in Du and Hwang (Proc. Nat. Acad. Sci. U.S.A. 87:9464–9466, 1990; Algorithmica 7(1):121–135, 1992). Hence the results in Rubinstein and Weng (J. Comb. Optim. 1:67–78, 1997) have not been proved yet.  相似文献   

17.
We consider a single-source network design problem from a game-theoretic perspective. Gupta, Kumar and Roughgarden (Proc. 35th Annual ACM STOC, pp. 365–372, 2003) developed a simple method for a single-source rent-or-buy problem that also yields the best-known approximation ratio for the problem. We show how to use a variant of this method to develop an approximately budget-balanced and group strategyproof cost-sharing method for the problem. The novelty of our approach stems from our obtaining the cost-sharing methods for the rent-or-buy problem by carefully combining cost-shares for the simpler Steiner tree problem. Our algorithm is conceptually simpler than the previous such cost-sharing method due to Pál and Tardos (Proc. 44th Annual FOCS, pp. 584–593, 2003), and improves the previously-known approximation factor of 15 to 4.6. A preliminary version of this work appears in the Proc. International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, 2004. This research was done in part during the IMA Workshop on Network Management and Design at the University of Minnesota, April 2003. A. Gupta supported in part by an NSF CAREER award CCF-0448095, and by an Alfred P. Sloan Fellowship. A. Srinivasan supported in part by the National Science Foundation under Grant No. 0208005 and ITR Award CNS-0426683. Research of é. Tardos supported in part by ONR grant N00014-98-1-0589, and NSF grants CCR-0311333 and CCR-0325453.  相似文献   

18.
We describe an O(n 3/log n)-time algorithm for the all-pairs-shortest-paths problem for a real-weighted directed graph with n vertices. This slightly improves a series of previous, slightly subcubic algorithms by Fredman (SIAM J. Comput. 5:49–60, 1976), Takaoka (Inform. Process. Lett. 43:195–199, 1992), Dobosiewicz (Int. J. Comput. Math. 32:49–60, 1990), Han (Inform. Process. Lett. 91:245–250, 2004), Takaoka (Proc. 10th Int. Conf. Comput. Comb., Lect. Notes Comput. Sci., vol. 3106, pp. 278–289, Springer, 2004), and Zwick (Proc. 15th Int. Sympos. Algorithms and Computation, Lect. Notes Comput. Sci., vol. 3341, pp. 921–932, Springer, 2004). The new algorithm is surprisingly simple and different from previous ones. A preliminary version of this paper appeared in Proc. 9th Workshop Algorithms Data Struct. (WADS), Lect. Notes Comput. Sci., vol. 3608, pp. 318–324, Springer, 2005.  相似文献   

19.
A popular approach in combinatorial optimization is to model problems as integer linear programs. Ideally, the relaxed linear program would have only integer solutions, which happens for instance when the constraint matrix is totally unimodular. Still, sometimes it is possible to build an integer solution with the same cost from the fractional solution. Examples are two scheduling problems (Baptiste and Schieber, J. Sched. 6(4):395–404, 2003; Brucker and Kravchenko, J. Sched. 11(4):229–237, 2008) and the single disk prefetching/caching problem (Albers et al., J. ACM 47:969–986, 2000). We show that problems such as the three previously mentioned can be separated into two subproblems: (1) finding an optimal feasible set of slots, and (2) assigning the jobs or pages to the slots. It is straigthforward to show that the latter can be solved greedily. We are able to solve the former with a totally unimodular linear program, from which we obtain simple combinatorial algorithms with improved worst case running time.  相似文献   

20.
In this paper we consider the p-ary transitive reduction (TR p ) problem where p>0 is an integer; for p=2 this problem arises in inferring a sparsest possible (biological) signal transduction network consistent with a set of experimental observations with a goal to minimize false positive inferences even if risking false negatives. Special cases of TR p have been investigated before in different contexts; the best previous results are as follows:
(1)  The minimum equivalent digraph problem, that correspond to a special case of TR1 with no critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation ratio of 1.617+ε for any constant ε>0 (Chiu and Liu in Sci. Sin. 4:1396–1400, 1965) and can be solved in linear time for directed acyclic graphs (Aho et al. in SIAM J. Comput. 1(2):131–137, 1972).
(2)  A 2-approximation algorithm exists for TR1 (Frederickson and JàJà in SIAM J. Comput. 10(2):270–283, 1981; Khuller et al. in 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937–938, 1999).
In this paper, our contributions are as follows:
•  We observe that TR p , for any integer p>0, can be solved in linear time for directed acyclic graphs using the ideas in Aho et al. (SIAM J. Comput. 1(2):131–137, 1972).
•  We provide a 1.78-approximation for TR1 that improves the 2-approximation mentioned in (2) above.
•  We provide a 2+o(1)-approximation for TR p on general graphs for any fixed prime p>1.
R. Albert’s research was partly supported by a Sloan Research Fellowship in Science and Technology. B. DasGupta’s research was partly supported by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973. E. Sontag’s research was partly supported by NSF grants EIA 0205116 and DMS-0504557.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号