首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In general, it is a difficult problem to solve the inverse of any function. With the inverse implication operation, we present a quantum algorithm for solving the inversion of function via using time–space trade-off in this paper. The details are as follows. Let function \(f(x)=y\) have k solutions, where \(x\in \{0, 1\}^{n}, y\in \{0, 1\}^{m}\) for any integers nm. We show that an iterative algorithm can be used to solve the inverse of function f(x) with successful probability \(1-\left( 1-\frac{k}{2^{n}}\right) ^{L}\) for \(L\in Z^{+}\). The space complexity of proposed quantum iterative algorithm is O(Ln), where L is the number of iterations. The paper concludes that, via using time–space trade-off strategy, we improve the successful probability of algorithm.  相似文献   

3.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

4.
In recent years, many layered indexing techniques over distributed hash table (DHT)-based peer-to-peer (P2P) systems have been proposed to realize distributed range search. In this paper, we present a fault tolerant constant degree dynamic Distributed Spatial Data Structure called DSDS that supports orthogonal range search on a set of N d-dimensional points published on n nodes. We describe a total order binary relation algorithm to publish points among supernodes and determine supernode keys. A non-redundant rainbow skip graph is used to coordinate message passing among nodes. The worst case orthogonal range search cost in a d-dimensional DSDS with n nodes is \(O\left (\log n+m+\frac {K}{B}\right )\) messages, where m is the number of nodes intersecting the query, K is the number of points reported in range, and B is the number of points that can fit in one message. A complete backup copy of data points stored in other nodes provides redundancy for our DSDS. This redundancy permits answering a range search query in the case of failure of a single node. For single node failure, the DSDS routing system can be recovered to a fully functional state at a cost of O(log n) messages. Backup sets in DSDS nodes are used to first process a query in the most efficient dimension, and then used to process a query containing the data in a failed node in d-dimensional space. The DSDS search algorithm can process queries in d-dimensional space and still tolerate failure of one node. Search cost in the worst case with a failed node increases to \(O\left (d\log n+dm+\frac {K}{B}\right )\) messages for d dimensions.  相似文献   

5.
The recognition of primitives in digital geometry is deeply linked with separability problems. This framework leads us to consider the following problem of pattern recognition : given a finite lattice set \(S\subset \mathbb {Z}^d\) and a positive integer n, is it possible to separate S from \(\mathbb {Z}^d \setminus S\) by n half-spaces? In other words, does there exist a polyhedron P defined by at most n half-spaces satisfying \(P\cap \mathbb {Z}^d = S\)? The difficulty comes from the infinite number of constraints generated by all the points of \(\mathbb {Z}^d\setminus S\). It makes the decidability of the problem non-straightforward since the classical algorithms of polyhedral separability can not be applied in this framework. We conjecture that the problem is nevertheless decidable and prove it under some assumptions: in arbitrary dimension, if the interior of the convex hull of S contains at least one lattice point or if the dimension d is 2 or if the dimension \(d=3\) and S is not in a specific configuration of lattice width 0 or 1. The proof strategy is to reduce the set of outliers \(\mathbb {Z}^d\setminus S\) to its minimal elements according to a partial order “is in the shadow of.” These minimal elements are called the lattice jewels of S. We prove that under some assumptions, the set S admits only a finite number of lattice jewels. The result about the decidability of the problem is a corollary of this fundamental property.  相似文献   

6.
We study the problem of non-preemptively scheduling n jobs, each job j with a release time \(t_j\), a deadline \(d_j\), and a processing time \(p_j\), on m parallel identical machines. Cieliebak et al. (2004) considered the two constraints \(|d_j-t_j|\le \lambda {}p_j\) and \(|d_j-t_j|\le p_j +\sigma \) and showed the problem to be NP-hard for any \(\lambda >1\) and for any \(\sigma \ge 2\). We complement their results by parameterized complexity studies: we show that, for any \(\lambda >1\), the problem remains weakly NP-hard even for \(m=2\) and strongly W[1]-hard parameterized by m. We present a pseudo-polynomial-time algorithm for constant m and \(\lambda \) and a fixed-parameter tractability result for the parameter m combined with \(\sigma \).  相似文献   

7.
Network cost and fixed-degree characteristic for the graph are important factors to evaluate interconnection networks. In this paper, we propose hierarchical Petersen network (HPN) that is constructed in recursive and hierarchical structure based on a Petersen graph as a basic module. The degree of HPN(n) is 5, and HPN(n) has \(10^n\) nodes and \(2.5 \times 10^n\) edges. And we analyze its basic topological properties, routing algorithm, diameter, spanning tree, broadcasting algorithm and embedding. From the analysis, we prove that the diameter and network cost of HPN(n) are \(3\log _{10}N-1\) and \(15 \log _{10}N-1\), respectively, and it contains a spanning tree with the degree of 4. In addition, we propose link-disjoint one-to-all broadcasting algorithm and show that HPN(n) can be embedded into FP\(_k\) with expansion 1, dilation 2k and congestion 4. For most of the fixed-degree networks proposed, network cost and diameter require \(O(\sqrt{N})\) and the degree of the graph requires O(N). However, HPN(n) requires O(1) for the degree and \(O(\log _{10}N)\) for both diameter and network cost. As a result, the suggested interconnection network in this paper is superior to current fixed-degree and hierarchical networks in terms of network cost, diameter and the degree of the graph.  相似文献   

8.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

9.
We consider the following scheduling problem. We have m identical machines, where each machine can accomplish one unit of work at each time unit. We have a set of n fully parallel jobs, where each job j has \(s_j\) units of workload, and each unit workload can be executed on any machine at any time unit. A job is considered complete when its entire workload has been executed. The objective is to find a schedule that minimizes the total weighted completion time \(\sum w_j C_j\), where \(w_j\) is the weight of job j and \(C_j\) is the completion time of job j. We provide theoretical results for this problem. First, we give a PTAS of this problem with fixed m. We then consider the special case where \(w_j = s_j\) for each job j, and we show that it is polynomial solvable with fixed m. Finally, we study the approximation ratio of a greedy algorithm, the Largest-Ratio-First algorithm. For the special case, we show that the approximation ratio depends on the instance size, i.e. n and m, while for the general case where jobs have arbitrary weights, we prove that the upper bound of the approximation ratio is \(1 + \frac{m-1}{m+2}\).  相似文献   

10.
The Variable-Sized Bin Packing Problem (abbreviated as VSBPP or VBP) is a well-known generalization of the NP-hard Bin Packing Problem (BP) where the items can be packed in bins of M given sizes. The objective is to minimize the total capacity of the bins used. We present an asymptotic approximation scheme (AFPTAS) for VBP and BP with performance guarantee \(A_{\varepsilon }(I) \leq (1+ \varepsilon )OPT(I) + \mathcal {O}\left ({\log ^{2}\left (\frac {1}{\varepsilon }\right )}\right )\) for any problem instance I and any ε>0. The additive term is much smaller than the additive term of already known AFPTAS. The running time of the algorithm is \(\mathcal {O}\left ({ \frac {1}{\varepsilon ^{6}} \log \left ({\frac {1}{\varepsilon }}\right ) + \log \left ({\frac {1}{\varepsilon }}\right ) n}\right )\) for BP and \(\mathcal {O}\left ({ \frac {1}{{\varepsilon }^{6}} \log ^{2}\left ({\frac {1}{\varepsilon }}\right ) + M + \log \left ({\frac {1}{\varepsilon }}\right )n}\right )\) for VBP, which is an improvement to previously known algorithms. Many approximation algorithms have to solve subproblems, for example instances of the Knapsack Problem (KP) or one of its variants. These subproblems - like KP - are in many cases NP-hard. Our AFPTAS for VBP must in fact solve a generalization of KP, the Knapsack Problem with Inversely Proportional Profits (KPIP). In this problem, one of several knapsack sizes has to be chosen. At the same time, the item profits are inversely proportional to the chosen knapsack size so that the largest knapsack in general does not yield the largest profit. We introduce KPIP in this paper and develop an approximation scheme for KPIP by extending Lawler’s algorithm for KP. Thus, we are able to improve the running time of our AFPTAS for VBP.  相似文献   

11.
We introduce two scheduling problems, the flexible bandwidth allocation problem (\(\textsc {FBAP}\)) and the flexible storage allocation problem (\(\textsc {FSAP}\)). In both problems, we have an available resource, and a set of requests, each consists of a minimum and a maximum resource requirement, for the duration of its execution, as well as a profit accrued per allocated unit of the resource. In \(\textsc {FBAP}\), the goal is to assign the available resource to a feasible subset of requests, such that the total profit is maximized, while in \(\textsc {FSAP}\) we also require that each satisfied request is given a contiguous portion of the resource. Our problems generalize the classic bandwidth allocation problem (BAP) and storage allocation problem (SAP) and are therefore \(\text {NP-hard}\). Our main results are a 3-approximation algorithm for \(\textsc {FBAP}\) and a \((3+\epsilon )\)-approximation algorithm for \(\textsc {FSAP}\), for any fixed \(\epsilon >0 \). These algorithms make nonstandard use of the local ratio technique. Furthermore, we present a \((2+\epsilon )\)-approximation algorithm for \(\textsc {SAP}\), for any fixed \(\epsilon >0 \), thus improving the best known ratio of \(\frac{2e-1}{e-1} + \epsilon \). Our study is motivated also by critical resource allocation problems arising in all-optical networks.  相似文献   

12.
The Planar Feedback Vertex Set problem asks whether an n-vertex planar graph contains at most k vertices meeting all its cycles. The Face Cover problem asks whether all vertices of a plane graph G lie on the boundary of at most k faces of G. Standard techniques from parameterized algorithm design indicate that both problems can be solved by sub-exponential parameterized algorithms (where k is the parameter). In this paper we improve the algorithmic analysis of both problems by proving a series of combinatorial results relating the branchwidth of planar graphs with their face cover. Combining this fact with duality properties of branchwidth, allows us to derive analogous results on feedback vertex set. As a consequence, it follows that Planar Feedback Vertex Set and Face Cover can be solved in \(O(2^{15.11\cdot\sqrt{k}}+n^{2})\) and \(O(2^{10.1\cdot\sqrt {k}}+n^{2})\) steps, respectively.  相似文献   

13.
We initiate studying the Remote Set Problem (\({\mathsf{RSP}}\)) on lattices, which given a lattice asks to find a set of points containing a point which is far from the lattice. We show a polynomial-time deterministic algorithm that on rank n lattice \({\mathcal{L}}\) outputs a set of points, at least one of which is \({\sqrt{\log n / n} \cdot \rho(\mathcal{L})}\) -far from \({\mathcal{L}}\) , where \({\rho(\mathcal{L})}\) stands for the covering radius of \({\mathcal{L}}\) (i.e., the maximum possible distance of a point in space from \({\mathcal{L}}\)). As an application, we show that the covering radius problem with approximation factor \({\sqrt{n / \log n}}\) lies in the complexity class \({\mathsf{NP}}\) , improving a result of Guruswami et al. (Comput Complex 14(2): 90–121, 2005) by a factor of \({\sqrt{\log n}}\) .Our results apply to any \({\ell_p}\) norm for \({2 \leq p \leq \infty}\) with the same approximation factors (except a loss of \({\sqrt{\log \log n}}\) for \({p = \infty}\)). In addition, we show that the output of our algorithm for \({\mathsf{RSP}}\) contains a point whose \({\ell_2}\) distance from \({\mathcal{L}}\) is at least \({(\log n/n)^{1/p} \cdot \rho^{(p)}(\mathcal{L})}\) , where \({\rho^{(p)}(\mathcal{L})}\) is the covering radius of \({\mathcal{L}}\) measured with respect to the \({\ell_p}\) norm. The proof technique involves a theorem on balancing vectors due to Banaszczyk (Random Struct Algorithms 12(4):351–360, 1998) and the “six standard deviations” theorem of Spencer (Trans Am Math Soc 289(2):679–706, 1985).  相似文献   

14.
The (s + t + 1)-dimensional exchanged crossed cube, denoted as ECQ(s, t), combines the strong points of the exchanged hypercube and the crossed cube. It has been proven that ECQ(s, t) has more attractive properties than other variations of the fundamental hypercube in terms of fewer edges, lower cost factor and smaller diameter. In this paper, we study the embedding of paths of distinct lengths between any two different vertices in ECQ(s, t). We prove the result in ECQ(s, t): if s ≥ 3, t ≥ 3, for any two different vertices, all paths whose lengths are between \( \max \left\{9,\left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +4\right\} \) and 2 s+t+1 ? 1 can be embedded between the two vertices with dilation 1. Note that the diameter of ECQ(s, t) is \( \left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +2 \). The obtained result is optimal in the sense that the dilations of path embeddings are all 1. The result reveals the fact that ECQ(s, t) preserves the path embedding capability to a large extent, while it only has about one half edges of CQ n .  相似文献   

15.
We consider optimization problems of the form (S, cost), where S is a clause set over Boolean variables x 1?...?x n , with an arbitrary cost function \(\mathit{cost}\colon \mathbb{B}^n \rightarrow \mathbb{R}\), and the aim is to find a model A of S such that cost(A) is minimized. Here we study the generation of proofs of optimality in the context of branch-and-bound procedures for such problems. For this purpose we introduce \(\mathtt{DPLL_{BB}}\), an abstract DPLL-based branch-and-bound algorithm that can model optimization concepts such as cost-based propagation and cost-based backjumping. Most, if not all, SAT-related optimization problems are in the scope of \(\mathtt{DPLL_{BB}}\). Since many of the existing approaches for solving these problems can be seen as instances, \(\mathtt{DPLL_{BB}}\) allows one to formally reason about them in a simple way and exploit the enhancements of \(\mathtt{DPLL_{BB}}\) given here, in particular its uniform method for generating independently verifiable optimality proofs.  相似文献   

16.
This paper introduces a parallel and distributed algorithm for solving the following minimization problem with linear constraints:
$$\begin{aligned} \text {minimize} ~~&f_1(\mathbf{x}_1) + \cdots + f_N(\mathbf{x}_N)\\ \text {subject to}~~&A_1 \mathbf{x}_1 ~+ \cdots + A_N\mathbf{x}_N =c,\\&\mathbf{x}_1\in {\mathcal {X}}_1,~\ldots , ~\mathbf{x}_N\in {\mathcal {X}}_N, \end{aligned}$$
where \(N \ge 2\), \(f_i\) are convex functions, \(A_i\) are matrices, and \({\mathcal {X}}_i\) are feasible sets for variable \(\mathbf{x}_i\). Our algorithm extends the alternating direction method of multipliers (ADMM) and decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This paper shows that the classic ADMM can be extended to the N-block Jacobi fashion and preserve convergence in the following two cases: (i) matrices \(A_i\) are mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to the N subproblems (but without any assumption on matrices \(A_i\)). In the latter case, certain proximal terms can let the subproblem be solved in more flexible and efficient ways. We show that \(\Vert {\mathbf {x}}^{k+1} - {\mathbf {x}}^k\Vert _M^2\) converges at a rate of o(1 / k) where M is a symmetric positive semi-definte matrix. Since the parameters used in the convergence analysis are conservative, we introduce a strategy for automatically tuning the parameters to substantially accelerate our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the first time that successfully solving a compressive sensing problem of such a large scale is reported.
  相似文献   

17.
In this paper we consider the time complexity of adding two n-bit numbers together within the tile self-assembly model. The (abstract) tile assembly model is a mathematical model of self-assembly in which system components are square tiles with different glue types assigned to tile edges. Assembly is driven by the attachment of singleton tiles to a growing seed assembly when the net force of glue attraction for a tile exceeds some fixed threshold. Within this frame work, we examine the time complexity of computing the sum of two n-bit numbers, where the input numbers are encoded in an initial seed assembly, and the output sum is encoded in the final, terminal assembly of the system. We show that this problem, along with multiplication, has a worst case lower bound of \(\varOmega ( \sqrt{n} )\) in 2D assembly, and \(\varOmega (\root 3 \of {n})\) in 3D assembly. We further design algorithms for both 2D and 3D that meet this bound with worst case run times of \(O(\sqrt{n})\) and \(O(\root 3 \of {n})\) respectively, which beats the previous best known upper bound of O(n). Finally, we consider average case complexity of addition over uniformly distributed n-bit strings and show how we can achieve \(O(\log n)\) average case time with a simultaneous \(O(\sqrt{n})\) worst case run time in 2D. As additional evidence for the speed of our algorithms, we implement our algorithms, along with the simpler O(n) time algorithm, into a probabilistic run-time simulator and compare the timing results.  相似文献   

18.
A grid graph \(G_{\mathrm{g}}\) is a finite vertex-induced subgraph of the two-dimensional integer grid \(G^\infty \). A rectangular grid graph R(mn) is a grid graph with horizontal size m and vertical size n. A rectangular grid graph with a rectangular hole is a rectangular grid graph R(mn) such that a rectangular grid subgraph R(kl) is removed from it. The Hamiltonian path problem for general grid graphs is NP-complete. In this paper, we give necessary conditions for the existence of a Hamiltonian path between two given vertices in an odd-sized rectangular grid graph with a rectangular hole. In addition, we show that how such paths can be computed in linear time.  相似文献   

19.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

20.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号