共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Remediation and recovery of uranium from contaminated subsurface environments with electrodes 总被引:6,自引:0,他引:6
Previous studies have demonstrated that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U(VI) to the relatively insoluble U(IV) with organic compounds serving as the electron donor. Studies were conducted to determine whether electrodes might serve as an alternative electron donor for U(VI) reduction by a pure culture of Geobacter sulfurreducens and microorganisms in uranium-contaminated sediments. Electrodes poised at -500 mV (vs a Ag/AgCl reference) rapidly removed U(VI) from solution in the absence of cells. However, when the poise at the electrode was removed, all of the U(VI) returned to solution, demonstrating that the electrode did not reduce U(VI). If G. sulfurreducens was present on the electrode, U(VI) did not return to solution until the electrode was exposed to dissolved oxygen. This suggeststhat G. sulfurreducens on the electrode reduced U(VI) to U(IV) which was stably precipitated until reoxidized in the presence of oxygen. When an electrode was placed in uranium-contaminated subsurface sediments, U(VI) was removed and recovered from groundwater using poised electrodes. Electrodes emplaced in flow-through columns of uranium-contaminated sediments readily removed U(VI) from the groundwater, and 87% of the uranium that had been removed was recovered from the electrode surface after the electrode was pulled from the sediments. These results suggest that microorganisms can use electrons derived from electrodes to reduce U(VI) and that it may be possible to remove and recover uranium from contaminated groundwater with poised electrodes. 相似文献
5.
Biogeochemical processes in ethanol stimulated uranium-contaminated subsurface sediments 总被引:1,自引:0,他引:1
Mohanty SR Kollah B Hedrick DB Peacock AD Kukkadapu RK Roden EE 《Environmental science & technology》2008,42(12):4384-4390
A laboratory incubation experiment was conducted with uranium-contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of terminal electron-accepting processes (TEAPs) was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4(2-) reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment Only gradual reduction of NO3-, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4(2-) reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Herbaspirillum in the ethanol-amended slurries. Phospholipid fatty acids (PLFAs) indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction that followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations. 相似文献
6.
7.
8.
Confounding impacts of iron reduction on arsenic retention 总被引:4,自引:0,他引:4
A transition from oxidizing to reducing conditions has long been implicated to increase aqueous As concentrations, for which reductive dissolution of iron (hydr)oxides is commonly implicated as the primary culprit. Confounding our understanding of processes controlling As retention, however, is that reductive transformation of ferrihydrite has recently been shown to promote As retention rather than release. To resolve the role iron phases have in regulating arsenic concentrations, here we examine As desorption from ferrihydrite-coated sands presorbed with As(III); experiments were performed at circumneutral pH under Fe-reducing conditions with the dissimilatory iron reducing bacterium Shewanella putrefaciens strain CN-32 over extended time periods. We reveal that with the initial phase of iron reduction, ferrihydrite undergoes transformation to secondary phases and increases As(III) retention (relative to abiotic controls). However, with increased reaction time, cessation of the phase transitions and ensuing reductive dissolution result in prolonged release of As(III) to the aqueous phase. Our results suggest that As(III) retention during iron reduction is temporally dependent on secondary precipitation of iron phases; during transformation to secondary phases, particularly magnetite, As(III) retention is enhanced even relative to oxidized systems. However, conditions that retard secondary transformation (more stable iron oxides or limited iron reducing bacterial activity), or prolonged anaerobiosis, will lead to both the dissolution of ferric (hydr)oxides and release of As(III) to the aqueous phase. 相似文献
9.
10.
Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands 总被引:1,自引:0,他引:1
Forbes MG Dickson KR Golden TD Hudak P Doyle RD 《Environmental science & technology》2004,38(3):892-898
Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland. 相似文献
11.
Arsenic, a toxic metalloid, is commonly associated with sulfide minerals in anoxic sediments. Here we characterize arsenic(III) retention on sediments from a sulfidic estuarine marsh using a series of sorption experiments, and probe the structure of retained arsenite with X-ray absorption spectroscopy. Although the extent of sorption varied with sampling locations, several adsorption characteristics were apparent. A fraction of arsenite adsorbed over the entire pH range examined, although it was most extensive at pH greater than 7, and conformed to a Langmuir isotherm. Iron sulfide phases were responsible for As partitioning in these sediments. Initially, an FeAsS-like precipitate formed with a structure similar to those reported for As(III) sorbed on iron sulfides, a complex that is highly reactive. Following reaction for 21 d, much of the FeAsS-like precipitate was converted to As2S3. A drop in the redox potential accompanied this conversion, suggesting that the evolution of sulfide and other reduced species stabilizes bound arsenic. Processes discerned in this study reveal the importance of sulfide minerals in As sequestration within anoxic environments. 相似文献
12.
Natural organic matter (NOM)-mediated redox cycling of elemental mercury Hg(0) and mercuric Hg(II) is critically important in affecting inorganic mercury transformation and bioavailability. However, these processes are not well understood, particularly in anoxic water and sediments where NOM can be reduced and toxic methylmercury is formed. We show that under dark anoxic conditions reduced organic matter (NOM(re)) simultaneously reduces and oxidizes Hg via different reaction mechanisms. Reduction of Hg(II) is primarily caused by reduced quinones. However, Hg(0) oxidation is controlled by thiol functional groups via oxidative complexation, which is demonstrated by the oxidation of Hg(0) by low-molecular-weight thiol compounds, glutathione, and mercaptoacetic acid, under reducing conditions. Depending on the NOM source, oxidation state, and NOM:Hg ratio, NOM reduces Hg(II) at initial rates ranging from 0.4 to 5.5 h(-1), which are about 2 to 6 times higher than those observed for photochemical reduction of Hg(II) in open surface waters. However, rapid reduction of Hg(II) by NOM(re) can be offset by oxidation of Hg(0) with an estimated initial rate as high as 5.4 h(-1). This dual role of NOM(re) is expected to strongly influence the availability of reactive Hg and thus to have important implications for microbial uptake and methylation in anoxic environments. 相似文献
13.
Transport of uranium within surface and subsurface environments is predicated largely on its redox state. Uranyl reduction may transpire through either biotic (enzymatic) or abiotic pathways; in either case, reduction of U(VI) to U(IV) results in the formation of sparingly soluble UO2 precipitates. Biological reduction of U(VI), while demonstrated as prolific under both laboratory and field conditions, is influenced by competing electron acceptors (such as nitrate, manganese oxides, or iron oxides) and uranyl speciation. Formation of Ca-UO2-CO3 ternary complexes, often the predominate uranyl species in carbonate-bearing soils and sediments, decreases the rate of dissimilatory U(VI) reduction. The combined influence of uranyl speciation within a mineralogical matrix comparable to natural environments and under hydrodynamic conditions, however, remains unresolved. We therefore examined uranyl reduction by Shewanella putrefaciens within packed mineral columns of ferrihydrite-coated quartz sand under conditions conducive or nonconducive to Ca-UO2-CO3 species formation. The results are dramatic. In the absence of Ca, where uranyl carbonato complexes dominate, U(VI) reduction transpires and consumes all of the U(VI) within the influent solution (0.166 mM) over the first 2.5 cm of the flow field for the entirety of the 54 d experiment. Over 2 g of U is deposited during this reaction period, and despite ferrihydrite being a competitive electron acceptor, uranium reduction appears unabated for the duration of our experiments. By contrast, in columns with 4 mM Ca in the influent solution (0.166 mM uranyl), reduction (enzymatic or surface-bound Fe(III) mediated) appears absent and breakthrough occurs within 18 d (at a flow rate of 3 pore volumes per day). Uranyl speciation, and in particular the formation of ternary Ca-UO2-CO3 complexes, has a profound impact on U(VI) reduction and thus transport within anaerobic systems. 相似文献
14.
An investigation of strong sodium retention mechanisms in nanopore environments using nuclear magnetic resonance spectroscopy 总被引:2,自引:0,他引:2
Recent experimental research into the adsorption of various cations on zeolite minerals has shown that nanopore channels of approximately 0.5 nm or less can create an effect whereby the adsorption of ions, especially those that are weakly hydrated, can be significantly enhanced. This enhanced adsorption occurs due to the removal of hydrating water molecules which in turn is caused by the nanopore channel's small size. A new adsorption model, called the nanopore inner-sphere enhancement (NISE) effect, has been proposed that explains this unusual adsorption mechanism. To further validate this model a series of nuclear magnetic resonance (NMR) spectroscopy studies is presented here. NMR spectra were gathered for Na adsorbed on three zeolite minerals of similar chemical composition but differing nanoporosities: zeolite Y with a limiting dimension of 0.76 nm, ZSM-5 with a limiting dimension of 0.51 nm, and mordenite with a limiting dimension of 0.26 nm. The NMR experiments validated the predictions of the NISE model whereby Na adsorbed via outer-sphere on zeolite Y, inner-sphere on ZSM-5, and a combination of both mechanisms on mordenite. The strong Na adsorption observed in these nanoporous minerals conflicts with sodium's general designation as a weak electrolyte. 相似文献
15.
R. Elias-Orozco A. Castellanos-Nava M. Gayt n-Martí nez J. D. Figueroa-C rdenas G. Loarca-Pi a 《Food Additives & Contaminants》2002,19(9):878-885
Traditional nixtamalization and an extrusion method for making the dough ( masa ) for corn tortillas that requires using lime and hydrogen peroxide were evaluated for the detoxification of aflatoxins. The traditional nixtamalization process reduced levels of aflatoxin B 1 (AFB 1 ) by 94%, aflatoxin M 1 (AFM 1 ) by 90% and aflatoxin B 1 -8,9-dihydrodiol (AFB 1 -dihydrodiol) by 93%. The extrusion process reduced levels of AFB 1 by 46%, AFM 1 by 20% and AFB 1 -dihydrodiol by 53%. Extrusion treatments with 0, 0.3 and 0.5% lime reduced AFB 1 levels by 46, 74 and 85%, respectively. The inactivation of AFB 1 , AFM 1 and AFB 1 -dihydrodiol in the extrusion process using lime together with hydrogen peroxide showed higher elimination of AFB 1 than treatments with lime or hydrogen peroxide alone. The extrusion process with 0.3% lime and 1.5% hydrogen peroxide was the most effective process to detoxify aflatoxins in corn tortillas, but a high level of those reagents negatively affected the taste and aroma of the corn tortilla as compared with tortillas elaborated by the traditional nixtamalization process. 相似文献
16.
Air drying (AD), freeze-drying (FD), and vacuum-microwave drying (VMD) were applied to fresh North American ginseng roots to evaluate the effect of different drying techniques on pore characteristics and the subsequent recovery of ginsenoside content. FD ginseng root produced the lowest reductions in both total moisture content and water activity (P < 0.05), with no differences noted between Ontario or British Columbia ginseng. Ginseng roots from Ontario and British Columbia sources were therefore pooled to conduct the root porosity and ginsenoside measurements. Among samples, FD ginseng obtained the highest total porosity followed by VMD and AD, respectively (P < 0.05). All dehydrated samples had a porous structure with sizes that ranged from 0.002 μm to 172 μm, dominated by macropores (>1.5 μm). Pore characteristics of dried ginseng root were shown to affect recovery of ginsenosides, with the general trend being an increase in total porosity resulting in an increase in total ginsenoside recovered. High performance liquid chromatography results obtained on specific ginsenosides showed that AD of ginseng root resulted in the lowest recovery of total ginsenosides, most notably, Rg1 and Rb1, followed by VMD and FD, respectively. There was no specific difference in total ginsenoside recovery from roots dried at increasing power of VMD. 相似文献
17.
Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries 总被引:1,自引:0,他引:1
Elisabete M.C. AlexandreTeresa R.S. Brandão Cristina L.M. Silva 《Journal of food engineering》2012,108(3):417-426
The effect of non-thermal technologies (ozone in aqueous solution, ultrasound and ultraviolet C radiation) and washings with chemical solutions (sodium hypochlorite and hydrogen peroxide) on safety and quality features of strawberries was studied. These treatments were applied before fruit storage at two different temperatures (4 and 15 °C). The overall impact on microbial loads (total mesophiles, and yeasts and moulds) and selected quality attributes (colour, firmness, pH, total anthocyanins and ascorbic acid content) was assessed.During storage under refrigerated temperature, washing with hydrogen peroxide solutions resulted in strawberries with lower microbial loads, when compared to the other treatments. However, it produced significant key quality attributes losses, such as colour and total anthocyanins content.The results presented show that ozone and ultrasound are promising alternatives to thermal treatments. The application of such technologies, before refrigerated storage of strawberries, allowed a satisfactory retention of all quality characteristics analysed, while being efficient in controlling microbial contamination. 相似文献
18.
Gaus C Brunskill GJ Connell W Prange J Müller JF Päpke O Weber R 《Environmental science & technology》2002,36(16):3542-3549
In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PCDDs and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warranted into possible anthropogenic sources in areas where natural PCDD formation has been suggested. 相似文献
19.
We evaluated compound-specific isotope analysis (CSIA) as a tool to assess the coupling of microbial toluene oxidation by Fe(III)-reducing bacteria and abiotic reduction of nitroaromatic contaminants by biogenic mineral-bound Fe(II) species. Examination of the two processes in isolated systems revealed a reproducible carbon isotope fractionation for toluene oxidation by Geobacter metal-lireducens with a solid Fe(III) phase as terminal electron acceptor. We found a carbon isotope enrichment factor, epsilonC, of -1.0 +/- 0.1 per thousand, which corresponds to an apparent kinetic isotope effect (AKIE(C)) of 1.0073 +/- 0.0009 for the oxidative cleavage of a C-H bond. Nitrogen isotope fractionation of the reduction of nitroaromatic compounds (NAC) by mineral-bound Fe(ll) species yielded a nitrogen isotope enrichment factor, epsilonN, of -39.7 +/- 3.4 per thousand for the reduction of an aromatic NO2-group (AKIE(N) = 1.0413 +/- 0.0037) that was constant for variable experimental conditions. Finally, AKIE values for C and N observed in coupled experiments, where reactive Fe(II) was generated through microbial activity, were identical to those obtained in the isolated experiments. This study provides new evidence on isotope fractionation behavior during contaminant transformation and promotes the use of CSIA for the elucidation of complex contaminant transformation pathways in the environment. 相似文献
20.
通过分析四平针2+1罗纹和相对2+2罗纹的组织结构和外观特点,绘制编织意匠图和结构图.在四平针2+1罗纹组织结构基础上,详细介绍两种减针留边工艺,包括四平针2+1罗纹的减针留边和相对2+2罗纹的减针留边,并在双针床电脑横机上编织羊毛衫实物.结果表明:四平针2+1罗纹组织结构的两种减针留边工艺均能满足产品设计需求,确保产... 相似文献