首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Multiple myeloma (MM) is a malignant plasma cell neoplasm that accounts for slightly more than 10% of all hematologic cancers and remains incurable. The major challenge remains the identification of better diagnosis and prognostic biomarkers. The advent of proteomic technologies creates new opportunities and challenges for those seeking to gain greater understanding of MM. Although there is a limited number of proteomic studies to date in MM, those performed highlight the potential impact of these technologies in our understanding of MM pathogenesis and the identification of novel therapeutic targets. In this review, we introduce the proteomic technologies available for the study of MM, summarize results of the published proteomic studies on MM, and discuss the novel developments and applications for the analysis of protein PTM in MM. The application of proteomic technologies will be valuable to better understand the pathogenesis of MM and may in the future open novel avenues in the treatment of MM.  相似文献   

2.
Quantitative proteomics can be used for the identification of cancer biomarkers that could be used for early detection, serve as therapeutic targets, or monitor response to treatment. Several quantitative proteomics tools are currently available to study differential expression of proteins in samples ranging from cancer cell lines to tissues to body fluids. 2-DE, which was classically used for proteomic profiling, has been coupled to fluorescence labeling for differential proteomics. Isotope labeling methods such as stable isotope labeling with amino acids in cell culture (SILAC), isotope-coded affinity tagging (ICAT), isobaric tags for relative and absolute quantitation (iTRAQ), and (18) O labeling have all been used in quantitative approaches for identification of cancer biomarkers. In addition, heavy isotope labeled peptides can be used to obtain absolute quantitative data. Most recently, label-free methods for quantitative proteomics, which have the potential of replacing isotope-labeling strategies, are becoming popular. Other emerging technologies such as protein microarrays have the potential for providing additional opportunities for biomarker identification. This review highlights commonly used methods for quantitative proteomic analysis and their advantages and limitations for cancer biomarker analysis.  相似文献   

3.
About one million people per year develop colorectal cancer (CRC) and approximately half of them die. The extent of the disease (i.e. local invasion at the time of diagnosis) is a key prognostic factor. The 5‐year survival rate is almost 90% in the case of delimited CRC and 10% in the case of metastasized CRC. Hence, one of the great challenges in the battle against CRC is to improve early diagnosis strategies. Large‐scale proteomic approaches are widely used in cancer research to search for novel biomarkers. Such biomarkers can help in improving the accuracy of the diagnosis and in the optimization of personalized therapy. Herein, we provide an overview of studies published in the last 5 years on CRC that led to the identification of protein biomarkers suitable for clinical application by using proteomic approaches. We discussed these findings according to biomarker application, including also the role of protein phosphorylation and cancer stem cells in biomarker discovery. Our review provides a cross section of scientific approaches and can furnish suggestions for future experimental strategies to be used as reference by scientists, clinicians and researchers interested in proteomics for biomarker discovery.  相似文献   

4.
Multiple sclerosis is an inflammatory-mediated demyelinating disorder most prevalent in young Caucasian adults. The various clinical manifestations of the disease present several challenges in the clinic in terms of diagnosis, monitoring disease progression and response to treatment. Advances in MS-based proteomic technologies have revolutionized the field of biomarker research and paved the way for the identification and validation of disease-specific markers. This review focuses on the novel candidates discovered by the application of quantitative proteomics to relevant disease-affected tissues in both the human context and within the animal model of the disease known as experimental autoimmune encephalomyelitis. The role of targeted MS approaches for biomarker validation studies, such as multiple reaction monitoring will also be discussed.  相似文献   

5.
Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively improved. This review outlines the usefulness of the proteomic profiling of animal disease models for the discovery of new reliable biomarkers, for the optimization of diagnostic procedures and the development of new treatment options for skeletal muscle disorders. Since inbred animal strains show genetically much less interindividual differences as compared to human patients, considerably lower experimental repeats are capable of producing meaningful proteomic data. Thus, animal model proteomics can be conveniently employed for both studying basic mechanisms of molecular pathogenesis and the effects of drugs, genetic modifications or cell-based therapies on disease progression. Based on the results from comparative animal proteomics, a more informed decision on the design of clinical proteomics studies could be reached. Since no one animal model represents a perfect pathobiochemical replica of all of the symptoms seen in complex human disorders, the proteomic screening of novel animal models can also be employed for swift and enhanced protein biochemical phenotyping.  相似文献   

6.
MS is an important analytical tool in clinical proteomics, primarily in the disease-specific discovery, identification and characterisation of proteomic biomarkers and patterns. MS-based proteomics is increasingly used in clinical validation and diagnostic method development. The latter departs from the typical application of MS-based proteomics by exchanging some of the high performance of analysis for the throughput, robustness and simplicity required for clinical diagnostics. Although conventional MS-based proteomics has become an important field in clinical applications, some of the most recent MS technologies have not yet been extensively applied in clinical proteomics. In this review, we will describe the current state of MS in clinical proteomics and look to the future of this field.  相似文献   

7.
CE coupled MS (CE-MS) has become an increasingly employed technology in proteome analysis with focus on the identification of biomarker peptides in clinical proteomics. In this review, we will cover technical aspects of CE-MS coupling and highlight the improvements made in the last few years. We examine CE-MS from an application point of view, and evaluate its merits and vices for biomarker discovery and clinical applications. We discuss the principal theoretical and practical obstacles encountered when employing CE-MS (and most other proteomic technologies) for the analysis of body fluids for biomarker discovery. We will present several examples of a successful application of CE-MS for biomarker discovery, implications for disease diagnosis, prognosis, and therapy evaluation, and will discuss current challenges and possible future improvements.  相似文献   

8.
Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues.  相似文献   

9.
Proteomics is a rapidly evolving ‘‘post-genomic’’ science utilizing advanced technologies in protein separation, identification, quantitation and heavily relying on bioinformatics. Proteomic research in pediatrics is important and most of the successes thus far are seen in research that utilize samples that require less invasive procedures and focus on prevailing childhood diseases such as acute lymphoblastic leukaemia and neuroblastoma. Recent advances in proteomics are helping to elucidate platelet processes that are relevant to bleeding and clotting disorders, as well as other important roles of platelets such as in angiogenesis and inflammation. Nevertheless, most of platelet proteome data obtained to date are derived from the adult population and the potential of platelet proteomic application in children has not yet been explored. As it happens in all research fields, there are additional challenges in studying children such as procuring sufficient biological samples and access to less common disease cohorts as compared to in adults. Furthermore, many of the prevalent platelet-mediated diseases in adults, such as coronary heart disease and atherosclerotic lesions, are believed to have origins during childhood. Hence, platelet proteomic research in children may reveal some important information on how platelet plays a role in the pathogenesis of disease. In this article, we refer to the current knowledge from platelet proteomic research strategies in adults and address the specific concerns in the study of pediatric samples.  相似文献   

10.
Visceral leishmaniasis (VL) is the most devastating type caused by Leishmania donovani, Leishmania infantum, and Leishmania chagasi. The therapeutic mainstay is still based on the antiquated pentavalent antimonial against which resistance is now increasing. Unfortunately, due to the digenetic life cycle of parasite, there is significant antigenic diversity. There is an urgent need to develop novel drug/vaccine targets against VL for which the primary goal should be to identify and characterize the structural and functional proteins. Proteomics, being widely employed in the study of Leishmania seems to be a suitable strategy as the availability of annotated sequenced genome of Leishmania major has opened the door for dissection of both protein expression/regulation and function. Advances in clinical proteomic technologies have enable to enhance our mechanistic understanding of virulence/pathogenicity/host-pathogen interactions, drug resistance thereby defining novel therapeutic/vaccine targets. Expression proteomics exploits the differential expression of leishmanial proteins as biomarkers for application towards early diagnosis. Further using immunoproteomics efforts were also focused on evaluating responses to define parasite T-cell epitopes as vaccine/diagnostic targets. This review has highlighted some of the relevant developments in the rapidly emerging field of leishmanial proteomics and focus on its future applications in drug and vaccine discovery against VL.  相似文献   

11.
12.
Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. MS-driven proteomics uniquely allows for the detection, identification, and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review, we describe applications of this technology in KLK biomarker discovery and elucidate MS-based techniques that have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis, and therapies.  相似文献   

13.
14.
Human tear fluid is charactered with very small volume and complex protein constitutes with a very large orders of magnitude. The tear proteome analysis provides a unique dataset (i.e., specific protein markers or protein patterns) that may be correlated to more effective diagnosis, prognosis, and response to therapy. Compared to less than 100 tear proteins obtained by the traditional methods, more than 400 proteins have been found in human tear fluid by current proteomic technologies. Many proteomics techniques, such as 2-DE, MALDI-TOF-MS, LC-MS, SELDI-TOF-MS, protein arrays, have been used to perform tear proteome analysis in healthy and/or disease subjects. The clinical application of tear proteomics needs suitable tear collection methods, standard tear handling procedures, and more sensitive and reliable proteomic technologies.  相似文献   

15.
The incidence of congenital cardiac abnormalities remains high. Paediatric patients with congenital cardiac defects often require surgery at a young age. The surgeries are often long and complex, rendering this population particularly vulnerable to the deleterious effects of cardiopulmonary bypass and cardiac surgery. The search for cardioprotective strategies is ongoing in an attempt to reduce the morbidity in this population. In the post-genomic era, it is apparent that simply determining the genomic sequences holds little diagnostic potential and means to determine progression of disease and response to treatment. The field of proteomics is expanding and application of proteomic techniques in the clinical setting holds great potential to advance our understanding of the proteomic changes involved in specific disease stages. This review will assess the application of proteomic techniques in the setting of paediatric cardiac surgery and highlight the need to obtain a clear understanding of the role of various proteins in children with cardiac conditions. The success and challenges of the available proteomic technology will be discussed as well as the future potential of proteomic methods for advancing our understanding of protein changes in children requiring cardiac surgery.  相似文献   

16.
This review summarises and discusses the degree to which proteomics is contributing to medical care, providing examples and signspots for future directions. Why do genomic approaches provide a limited view of gene expression? Because of the multifactorial nature of many diseases, proteomics enables us to understand the molecular basis of disease, not only at the organism, whole-cell or tissue levels, but also in subcellular structures, protein complexes and biological fluids. The application of proteomics in medicine is expected to have a major impact by providing an integrated view of individual disease processes. This review describes several proteomic platforms and examines the role of proteomics as a tool for clinical biomarker discovery, the identification of prognostic and earlier diagnostic markers, their use in monitoring the effects of drug treatments and eventually find more efficient and safer therapeutics for a wide range of pathologies.  相似文献   

17.
It is estimated that 37 million people worldwide suffer from blindness and 124 million people have impaired vision. While the relatively recently developed therapies, antivascular endothelial growth factor inhibitors for the treatment of age-related macular degeneration, and prostaglandin analogues for the treatment of glaucoma are beneficial for some patients, there are many individuals with sight-threatening diseases for whom no effective pharmacological therapy is available. For many of these diseases, the molecular mechanisms remain to be comprehensively elucidated, thus precluding the design of successful therapies against specific pathological targets. The current review summarises recent attempts to elucidate molecular mechanisms of ocular diseases, including diabetic retinal disease, age-related macular degeneration and inherited blindness using proteomic methodologies. A novel hypothesis can be generated from global protein expression analysis of disease tissue, which can then be addressed with cellular and in vivo functional studies. For example, the identification of extracellular carbonic anhydrase from the vitreous of diabetic retinopathy patients using MS based proteomics led to the elucidation of a new pathway involved in intraretinal edema, which could be inhibited by a number of agents targeting different proteins in this pathway in relevant animal models. The potential of protein biomarkers for diagnosis and the identification of novel disease mechanisms are also discussed.  相似文献   

18.
Clinical proteomics, a rapidly growing field, intends to use specific diagnostic proteomic/peptidomic markers for initial diagnosis or prognosis of the progression of various diseases. Analyses of disease-associated markers in defined biological samples can provide valuable molecular diagnostic information for these diseases. This approach relies on sensitive and highly standardized modern analytical techniques. In the recent years, one of these technologies, CZE online coupled to MS (CZE-MS), has been increasingly used for the detection of peptide biomarkers (<20 kDa) in body fluids such as urine. This review presents the most relevant urinary proteomic studies addressing the application of CZE-MS in clinically relevant biomarker research between the years 2006 and 2014.  相似文献   

19.
20.
Clinical proteomics can be defined as the use of proteomic technologies to identify and measure biomarkers in fluids and tissues. The current work is intended to review various methods used for the determination of the total concentration of protein or peptide in fluids and tissues and the application of such methods to clinical proteomics. Specifically, this article considers the approaches to the measurement of total protein concentration, not the measurement of the concentration of a specific protein or group of proteins in a larger mixture of proteins. The necessity of understanding various concepts such as fit-for-use, quality-by-design, and other regulatory elements is discussed, as is the significance of using suitable standards for the protein quality of various samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号