首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic experimental and theoretical investigation of the elastic and failure properties of ZnO nanowires (NWs) under different loading modes has been carried out. In situ scanning electron microscopy (SEM) tension and buckling tests on single ZnO NWs along the polar direction [0001] were conducted. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The bending modulus increased more rapidly than the tensile modulus, which demonstrates that the elasticity size effects in ZnO NWs are mainly due to surface stiffening. Two models based on continuum mechanics were able to fit the experimental data very well. The tension experiments showed that fracture strain and strength of ZnO NWs increased as the NW diameter decreased. The excellent resilience of ZnO NWs is advantageous for their applications in nanoscale actuation, sensing, and energy conversion.   相似文献   

2.
Lin  Haifeng  Li  Yanyan  Li  Haoyi  Wang  Xun 《Nano Research》2017,10(4):1377-1392
Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging.In this study,unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method.Flower-like sheaths are assembled from numerous defect-rich O-incorporated {0001} MoS2 ultrathin nanosheets (NSs),and {11(2)0}-facet surrounded CdS NW stems are grown preferentially along the c-axis.Interestingly,the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites,and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs.Moreover,the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs.Therefore,in the absence of noble metals as co-catalysts,the 1D MoS2 NS/CdS NW hybrids exhibit an excellent Ha-generation rate of 10.85 mmol·g-1·h-1 and a quantum yield of 22.0% at A =475 nm,which is far better than those of Pt/CdS NWs,pure MoS2 NSs,and CdS NWs as well as their physical mixtures.Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.  相似文献   

3.
A ZnO nanowire vacuum pressure sensor   总被引:1,自引:0,他引:1  
In this study, we report the growth and characterization of lateral ZnO nanowires (NWs) on ZnO:Ga/glass templates. Using x-ray diffraction and micro-Raman spectroscopy, it was found that crystal quality of the as-grown ZnO NWs is good. It was also found that the average length and average diameter of the laterally grown ZnO NWs were 5?μm and 30?nm, respectively. A vacuum pressure sensor was then fabricated using a single NW bridging across two electrodes. By measuring the current-voltage characteristics of the samples at low pressure, we found that the currents were of 17, 34.28, 57.37 and 96.06?nA for the ZnO NW measured at 1 × 10(-3)?Torr, 1 × 10(-4)?Torr, 3 × 10(-5)?Torr and 5 × 10(-6)?Torr, respectively. These values suggest that the laterally grown ZnO NWs prepared in this study are potentially useful for vacuum pressure sensing.  相似文献   

4.
Sensitivity-customization of zinc oxide (ZnO) nanowire (NW) gas sensors has been demonstrated by controlling Ga-doping, thereby tuning the resistance of the NWs. Both un-doped and 5 weight% Ga-doped ZnO (GZO) NWs are synthesized for the highly sensitive sensing within a narrow detection window and a less sensitive one within an expanded window, respectively. We have employed hot-walled pulsed laser deposition (HW-PLD) for the NW synthesis. With CO gas injection, the resistance reduction of NWs is detected and analyzed in a self-designed gas chamber that guarantees the precise control of gas flow and, gas concentration, as well as temperature. NW sensitivity is proportional to the sensing temperature and inversely proportional to the doping concentration resulting in widening the sensing window up to 230 times by the 5 wt.% Ga-doping.  相似文献   

5.
A simple novel synthetic method for preparing ZnSe/ZnO heterostructured nanowire (NW) arrays via the selenization of ZnO NWs is reported. A hydrothermally grown ZnO NWs array on a glass substrate was reacted with selenium vapor to generate a 20–30 nm of zincblend ZnSe nanoparticles (NPs) on wurtzite ZnO NWs. A growth mechanism was proposed based on SEM, XRD, and TEM analysis to explain the partial chemical conversion of ZnO NW surfaces into ZnSe NPs. This mechanism is applicable to the synthesis of other chalcogenide compounds. The as-synthesized ZnSe/ZnO heterojunctions showed enhanced UV–visible light absorption properties. The materials exhibited excellent photocatalytic activity toward the decomposition of an organic dye compared to the bare ZnO due to enhanced light absorption and the type-II cascade band structure.  相似文献   

6.
We report on the collective integration technology of vertically aligned nanowires (NWs). Si?and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300?K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.  相似文献   

7.
A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible‐light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics. Subsequently, the CdS/RGO/ZnO heterostructure is successfully utilized for the PEC bioanalysis of glutathione at 0 V (vs Ag/AgCl). The self‐powered device demonstrates satisfactory sensing performance with rapid response, a wide detection range from 0.05 mm to 1 mm , an acceptable detection limit of 10 μm , as well as certain selectivity, reproducibility, and stability. Therefore, the CdS/RGO/ZnO heterostructure has opened up a promising channel for the development of PEC biosensors.  相似文献   

8.
To enhance the performance of semiconductor photocatalysts, cocatalysts are used to accelerate surface reactions. Herein, ultrasmall molybdenum–oxygen (MoOx) clusters are developed as a novel non‐noble cocatalyst, which significantly promotes the photocatalytic hydrogen generation rate of CdS nanowires (NWs). As indicated by extended X‐ray absorption fine structure analysis, direct bonds are formed between CdS NWs and MoOx clusters, which guarantee the migration of photo‐generated charge carriers. Moreover, the MoOx clusters induce deep electron trap states owing to the unique atomic arrangement and configuration with the generation of long‐lived electrons to enhance the activity. These findings may guide the design of efficient cocatalytic materials for solar water splitting and open a new avenue toward practical applications of ultrasmall clusters.  相似文献   

9.
Wu C  Jie J  Wang L  Yu Y  Peng Q  Zhang X  Cai J  Guo H  Wu D  Jiang Y 《Nanotechnology》2010,21(50):505203
Cl-doped n-type CdS NWs with single-crystal wurtzite structure and [Formula: see text] growth direction were synthesized by using CdCl(2) as the dopant via a thermal co-evaporation method. By controlling the Cl vapor pressure during the growth, the conductivity of the CdS:Cl NWs can be tuned in a wide range of five orders of magnitude. A nano-photodetector based on the CdS:Cl NWs shows high sensitivity to visible light with excellent stability and reproducibility. Significantly, the photoconductivity of the CdS NWs is greatly enhanced by Cl doping and the responsivity and photoconductive gain of the CdS:Cl NWs have substantially increased compared with the undoped CdS NWs. Further study also demonstrates the polarization-dependent photoconductivity of the CdS:Cl NWs. It is expected that the CdS:Cl NWs with tunable optoelectronic properties will have important applications in high-performance nano-optoelectronic devices.  相似文献   

10.
Incorporation of a bulk heterojunction is an effective strategy to enhance charge separation and carrier transport in solar cells, and has been adopted in polymeric and colloidal nanoparticle solar cells to improve energy conversion efficiency. Here, we report bulk heterojunction solar cells based on one-dimensional structures, fabricated by mixing CdS nanowires (CdS NWs) and single-walled carbon nanotubes (CNTs) to form a composite film with mutually interpenetrating networks through a simple solution-filtration process. Within the composite, the CNT network boosts charge separation by extracting holes generated from CdS NWs and also forms the transport path for carrier collection by the external electrode. At an optimized CNT loading of about 5 wt.%, the CdS NW/CNT bulk heterojunction solar cells showed three orders of magnitude increase in photocurrent and cell efficiency compared to a cell with the same materials arranged in a stacked layer configuration with a plain heterojunction. External quantum efficiency and photoluminescence studies revealed the efficient charge transfer process from photoexcited CdS NWs to CNTs in the mixed form. Our results indicate that the bulk heterojunction structure strategy can be extended to semiconductor NWs and CNTs and can greatly improve solar cell performance.   相似文献   

11.
Zinc oxide nanowires (ZnO NWs) were successfully synthesized on the ITO/PET polymer substrates by a hydrothermal method. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy investigations were carried out to characterize the crystallinity, surface morphologies, and orientations of these NWs, respectively. The influence of NW surface morphologies on the optical and electrical properties of ZnO NWs was studied. The hydrothermally grown ZnO NWs with direct band gap of 3.21 eV emitted ultraviolet photoluminescence of 406 nm at room temperature. Field emission measurements revealed that the threshold electric fields (Eth, current density of 1 mA/cm2) of ZnO NWs/ITO/PET and ZnO NWs/ZnO/ITO/PET are 1.6 and 2.2 V/microm with the enhancement factors, beta values, of 3275 and 4502, respectively. Furthermore, the field emission performance of ZnO NWs deposited on the ITO/PET substrate can be enhanced by illumination with Eth of 1.3 V/microm and displays a maximum emission current density of 18 mA/cm2. The ZnO NWs successfully grown on polymer substrate with high transmittance, low threshold electric field, and high emission current density may be applied to a flexible field emission display in the future.  相似文献   

12.
Lee M  Yong K 《Nanotechnology》2012,23(19):194014
Here, a facile approach for the fabrication of CuS nanoparticle (NP)/ZnO nanowire (NW) heterostructures on a mesh substrate through a simple two-step solution method is demonstrated. Successive ionic layer adsorption and reaction (SILAR) was employed to uniformly deposit CuS NPs on the hydrothermally grown ZnO NW array. The synthesized CuS/ZnO heterostructure NWs exhibited superior photocatalytic activity under visible light compared to bare ZnO NWs. This strong photocatalytic activity under visible light is due to the interfacial charge transfer (IFCT) from the valence band of the ZnO NW to the CuS NP, which reduces CuS to Cu(2)S. After repeated cycles of photodecolorization of Acid Orange 7 (AO7), the photocatalytic behavior of CuS/ZnO heterostructure NWs exhibited no significant loss of activity. Furthermore, our CuS/ZnO NWs/mesh photocatalyst floats in solution via partial superhydrophobic modification of the NWs.  相似文献   

13.
Cadmium sulfide (CdS) nanowires (NWs) were prepared by the solvothermal method using ethylenediamine as a solvent. Two sets of CdS NWs were synthesized at 160 and 200 °C for various reaction durations (3?5, 7, and 24 h). Scanning/tunneling electron microscopy was used to examine the surface morphology of the grown NWs. Their dimensions are found to depend on the reaction temperature and duration. The CdS NWs grown at 200 °C for all durations are longer than those prepared at 160 °C, with diameters ranging from 15 to 40 nm. A three-armed structure is exhibited by all the samples. The grown CdS NWs display a hexagonal wurtzite phase and grows along the \(\mathbf {\left \langle {001}\right \rangle }\) direction. The optical absorption of the grown NWs shows a sharp absorption edge with a blueshift, which indicates an expansion of the optical band gap. All prepared samples show two emission peaks in their photoluminescence spectra. The emission peak location depends on the reaction temperature and duration. The CdS NWs prepared at 160 °C show a sharp band–band emission compared with those prepared at 200 °C. Raman analysis indicates that the optical properties of the grown NWs are enhanced with increased temperature and reaction duration.  相似文献   

14.
A comprehensive theoretical investigation on the electronic and magnetic properties of V-doped and H-passivated ZnO nanowires (NWs) was performed using spin-polarized density functional theory. The magnetic couplings of six configurations of V-doped ZnO NWs are studied in detail and stable ferromagnetism (FM) ordering is found in certain configurations. The FM mechanism originated from the strong hybridization of V 3d and O 2p around the Fermi level. Our results show that the uniaxial strain is an effective method to tune the magnetic properties of this material system. Room temperature ferromagnetism in these V-doped ZnO NWs indicates that these materials have a promising application in nanoscale spintronics.  相似文献   

15.
由于半导体ZnO禁带宽度较宽,因而其可见光催化活性较差.本文分别采用N掺杂、碳包覆、贵金属修饰以及半导体复合等方式来改善纳米ZnO的可见光催化活性,并以罗丹明B为降解污染物,对比了不同材料可见光催化降解有机污染物的效率.研究结果显示以氨水为氮源,通过水热法制备的氮掺杂N-ZnO光催化剂,相比于纯ZnO,对可见光吸收增强...  相似文献   

16.
A hierarchically patterned metal/semiconductor (gold nanoparticles/ZnO nanowires) nanostructure with maximized photon trapping effects is fabricated via interference lithography (IL) for plasmon enhanced photo‐electrochemical water splitting in the visible region of light. Compared with unpatterned (plain) gold nanoparticles‐coated ZnO NWs (Au NPs/ZnO NWs), the hierarchically patterned Au NPs/ZnO NWs hybrid structures demonstrate higher and wider absorption bands of light leading to increased surface enhanced Raman scattering due to the light trapping effects achieved by the combination of two different nanostructure dimensions; furthermore, pronounced plasmonic enhancement of water splitting is verified in the hierarchically patterned Au NPs/ZnO NWs structures in the visible region. The excellent performance of the hierarchically patterned Au NPs/ZnO NWs indicates that the combination of pre‐determined two different dimensions has great potential for application in solar energy conversion, light emitting diodes, as well as SERS substrates and photoelectrodes for water splitting.  相似文献   

17.
Arrays of ZnO nanowires (NWs) were fabricated within the well-distributed pores of anodic aluminium oxide (AAO) template by a simple chemical method. The photoluminescence (PL) and field emission (FE) properties of the AAO/ZnO NWs hybrid structure were investigated in detail. The hybrid nanostructure exhibits interesting PL characteristics. ZnO NWs exhibit UV emission at 378 nm and two prominent blue-green emissions at about 462 and 508 nm. Intense blue emission from the AAO template itself was observed at around 430 nm. Herein, for the first time we report the FE characteristics of the ZnO/AAO hybrid structure to show the influence of the AAO template on the FE property of the hybrid structure. It is found that the turn-on electric field of the vertically grown and aligned ZnO NWs within the pores of AAO template is lower than the entangled unaligned ZnO NWs extracted from the template. Although the AAO template exhibits no FE current but it helps to achieve better FE property of the ZnO NWs through better alignment. The turn-on electric field of aligned NWs was found to be 3 V μm−1 at a current of 0.1 μA. Results indicate that the AAO embedded ZnO NW hybrid structure may find useful applications in luminescent and field emission display devices.  相似文献   

18.
We have sputtered Zn onto quasi-one-dimensional ZnO nanowires (NWs) in order to investigate the effect of Zn diffusion on the photoluminescence and photoconduction properties of ZnO NWs. Elemental mapping clearly indicates higher Zn concentration in the NWs due to diffusion of Zn. The Zn-sputtered NWs show an enhanced ultraviolet emission with 7 nm red shift. Since the ionization energy of Zni is 51 meV, the enhanced PL emission with a red shift is correlated to the coupling between free exciton and zinc interstitials (Zni) defects. The photocurrent transients show almost 20 times more photocurrent generation in Zn/ZnO NWs compared to the as-grown NWs. In contrast, the thin film shows no significant change in the photoluminescence and photoconductivity. Based on the photoconductivity and photoluminescence results, we predict that Zn diffusion in the NWs occurs easily compared to the films because of the smaller dimensions of the NWs.  相似文献   

19.
Yuan GD  Zhang WJ  Jie JS  Fan X  Zapien JA  Leung YH  Luo LB  Wang PF  Lee CS  Lee ST 《Nano letters》2008,8(8):2591-2597
Well-aligned ZnO nanowire (NW) arrays with durable and reproducible p-type conductivity were synthesized on alpha-sapphire substrates by using N2O as a dopant source via vapor-liquid-solid growth. The nitrogen-doped ZnO NWs are single-crystalline and grown predominantly along the [110] direction, in contrast to the [001] direction of undoped ZnO NWs. Electrical transport measurements reveal that the nondoped ZnO NWs exhibit n-type conductivity, whereas the nitrogen-doped ZnO NWs show compensated highly resistive n-type and finally p-type conductivity upon increasing N2O ratio in the reaction atmosphere. The electrical properties of p-type ZnO NWs are stable and reproducible with a hole concentration of (1-2) x 10(18) cm(-3) and a field-effect mobility of 10-17 cm2 V(-2) s(-1). Surface adsorptions have a significant effect on the transport properties of NWs. Temperature-dependent PL spectra of N-doped ZnO NWs show acceptor-bound-exciton emission, which corroborates the p-type conductivity. The realization of p-type ZnO NWs with durable and controlled transport properties is important for fabrication of nanoscale electronic and optoelectronic devices.  相似文献   

20.
先用水热反应合成六方晶相CdS多层级花状微球并在其表面生长ZnO纳米棒形成均匀的ZnO/CdS复合结构,然后用光还原法将Ag纳米颗粒负载于ZnO纳米棒制备出ZnO/CdS/Ag三元半导体光催化剂,对其进行扫描电镜和透射电镜观察、光电性能测试、活性基团捕获实验以及光催化降解和抗菌性能测试,研究其对亚甲基蓝(MB)的降解和抗菌性能。结果表明:ZnO纳米棒均匀生长在CdS微球表面,CdS晶体没有明显裸露,Ag纳米粒子负载在ZnO纳米棒的表面;ZnO/CdS/Ag三元复合光催化剂有良好的可见光响应、较低的阻抗和较高的光电流密度;ZnO/CdS/Ag复合光催化剂能同时产生羟基和超氧自由基等活性氧基团;ZnO/CdS/Ag三元复合光催化剂对亚甲基蓝(MB)的30 min降解率高于90%;0.25 mg/mL的ZnO/CdS/Ag对革兰氏阴性菌(大肠杆菌)的灭菌率高于96%,对革兰氏阳性菌(金黄色葡萄球菌)能完全灭除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号