首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Characterization of the human brain proteome is a critical area of research. While examination of the human cortex has provided some insight, very little is known about the proteome of the human midbrain, which demonstrates substantial loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in Parkinson's disease (PD). Therefore, characterization of this region is essential to a better understanding of the pathogenesis of PD. This dataset paper reports two separate studies, where human SNpc was collected from PD and control subjects and 1263 proteins were identified using MALDI-TOF/TOF as well as linear ion trap MS platforms. With gene ontology analysis, the proteins were categorized according to their biological processes, as well as cellular components. These data were also compared with previous proteomic characterization of the human frontal and temporal cortex, and cerebrospinal fluid to establish shared proteins of relevance. The present dataset is the most extensive survey of the human SNpc proteome, to date. Further characterization of the SNpc proteome will significantly facilitate our understanding of the function and expression of proteins involved in PD, as well as provide potential proteins that may be utilized as biomarkers.  相似文献   

2.
Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively improved. This review outlines the usefulness of the proteomic profiling of animal disease models for the discovery of new reliable biomarkers, for the optimization of diagnostic procedures and the development of new treatment options for skeletal muscle disorders. Since inbred animal strains show genetically much less interindividual differences as compared to human patients, considerably lower experimental repeats are capable of producing meaningful proteomic data. Thus, animal model proteomics can be conveniently employed for both studying basic mechanisms of molecular pathogenesis and the effects of drugs, genetic modifications or cell-based therapies on disease progression. Based on the results from comparative animal proteomics, a more informed decision on the design of clinical proteomics studies could be reached. Since no one animal model represents a perfect pathobiochemical replica of all of the symptoms seen in complex human disorders, the proteomic screening of novel animal models can also be employed for swift and enhanced protein biochemical phenotyping.  相似文献   

3.
4.
The molecular and cellular mechanisms underlying the multistage processes of cancer progression and metastasis are complex and strictly depend on the interplay between tumor cells and surrounding tissues. Identification of protein aberrations in cancer pathophysiology requires a physiologically relevant experimental model. The mouse offers such a model to identify protein changes associated with tumor initiation and progression, metastasis development, tumor/microenvironment interplay, and treatment responses. Furthermore, the mouse model offers the ability to collect samples at any stage in tumor development from highly matched disease cases and controls with identical environmental and genetic backgrounds, thus providing an excellent method for biomarker discovery. Xenograft and genetically engineered mouse models have been widely used to identify proteomic patterns in tumor tissues and plasma samples associated with different stages of human cancer, including early cancer detection and development of metastasis. Here, we review proteomic strategies to identify proteins involved in key cancer processes within such animal models as well as biomarkers for diagnosis, prognosis, and monitoring of cancer progression and treatment response. Central to such studies is the ability to ensure at an early stage that the identified proteins are of clinical relevance by examining relevant specimens from larger cohorts of cancer patients.  相似文献   

5.
The dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) replicates many of the pathological hallmarks of Parkinson's disease (PD) in mice via selective destruction of dopamine neurons of the substantia nigra and striatum. Although MPTP has been widely used to study downstream effects following the degeneration of dopaminergic neurons, the underlying mechanisms of MPTP action remain poorly understood. To determine the underlying mechanisms of MPTP action at the protein level, a 2-DE-based proteomics approach was used to evaluate the changes in protein expression in substantia nigra and striatal tissue in C57BL/6 mice after MPTP administration. We identified nine proteins that were markedly altered and are likely to be involved in mitochondrial function, heat shock protein activity, and which contribute enzyme activities for energy metabolism and protein degradation.  相似文献   

6.
The need to provide in vivo complex environments to understand human diseases strongly relies on the use of animal models, which traditionally include small rodents and rabbits. It is becoming increasingly evident that the few species utilised to date cannot be regarded as universal. There is a great need for new animal species that are naturally endowed with specific features relevant to human diseases. Farm animals, including pigs, cows, sheep and horses, represent a valid alternative to commonly utilised rodent models. There is an ample scope for the application of proteomic techniques in farm animals, and the establishment of several proteomic maps of plasma and tissue has clearly demonstrated that farm animals provide a disease environment that closely resembles that of human diseases. The present review offers a snapshot of how proteomic techniques have been applied to farm animals to improve their use as biomedical models. Focus will be on specific topics of biomedical research in which farm animal models have been characterised through the application of proteomic techniques.  相似文献   

7.
The underlying pathophysiology of psychiatric disorders remains elusive. The use of quantitative proteomics to investigate disease-specific protein signatures holds great promise to improve the understanding of psychiatric disorders and identify relevant biomarkers. In this review, we discuss quantitative proteomic approaches for elucidating molecular mechanisms of psychiatric disorders, i.e. anxiety, schizophrenia, bipolar disorder and depression, by studying specimens from animal models and patients. We present gel-based, label-free and stable isotope-labeling methodologies and evaluate their strengths and limitations in the context of psychiatric research, with a focus on (15)N metabolic labeling of live animals due to its increased accuracy and potential for future applications. We also review biomarker candidate validation methods and present quantitative proteomic studies from the literature that aim to disentangle the molecular pathobiology of psychiatric disorders and identify candidate biomarkers. Finally, we explore the applicability of implementing proteomic methods as a routine diagnostic tool in the clinical laboratory.  相似文献   

8.
Necrotising enterocolitis (NEC), short bowel syndrome (SBS) and intrauterine growth restriction (IUGR) are three conditions associated with intestinal dysfunction in newborn infants, particularly those born preterm. Piglet (Sus scrofa) models have recently been developed for NEC, SBS and IUGR, and tissue proteomic analyses have identified unknown pathways and new prognostic disease markers. Intestinal HSPs, iron metabolism proteins and proteins related to amino acid (e.g. arginine) and glucose metabolism are consistently affected by NEC progression and some of these proteins are also affected by SBS and IUGR. Parallel changes in some plasma and urinary proteins (e.g. haptoglobin, globulins, complement proteins, fatty acid binding proteins) may mirror the intestinal responses and pave the way to biomarker discovery. Explorative non-targeted proteomics provides ideas about the cellular pathways involved in intestinal adaptation during the critical neonatal period. Proteomics, combined with other -omic techniques, helps to get a more holistic picture of intestinal adaptation during NEC, SBS and IUGR. Explorative -omic research methods also have limitations and cannot replace, but only supplement, classical hypothesis-driven research that investigate disease mechanisms using a single or few endpoints.  相似文献   

9.
This review focuses on the use of proteomic tools for the characterization of cell death mechanisms that have contributed to drug discovery efforts. Resistance to cell death plays a major role in the development of many diseases, including numerous types of malignancies. Using a multitude of proteomic approaches, including protein–protein interaction studies, phosphorylation site mapping, ubiquitination site identification, and differential quantitative approaches, various cellular death pathways such as apoptosis and necroptosis have been investigated. These studies have aided in the development of therapeutic strategies or allowed dissection of clinical results to evaluate the success of clinical trials in addition to contributing to our understanding of these biological pathways. Here, we address the new wave of discoveries enabled by advancements in mass spectrometric technology and bioinformatic infrastructure that will hopefully lead to clinically efficacious strategies to overcome resistance to apoptosis and therefore offer improved treatment options for patients.  相似文献   

10.
11.
Multiple sclerosis is characterized by inflammatory demyelination and axonal loss as pathophysiological correlates of relapsing activity and progressive development of clinical disability. The molecular processes involved in this pathogenesis are still unclear as they are quite complex and heterogeneous. In this article we present protein expression analysis of brain and spinal cord tissues from different models of murine experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model for multiple sclerosis. We observed a number of EAE-specific protein expression and PTM differences. Proteome analysis was extended to multiple sclerosis specimens in order to validate the EAE findings. Our findings suggest the regulation of a number of proteins that shed light on the molecular mechanisms of the disease processes taking place in EAE and multiple sclerosis. We found consistent modulation of proteins including serum amyloid P component, sirtuin 2, dihydropyrimidinase-related protein family proteins, stathmin 1, creatine kinase B and chloride intracellular channel protein 1. Functional classification of the proteins by database and the literature mining reveals their association with neuronal development and myelinogenesis, suggesting possible disease processes that mediate neurodegeneration.  相似文献   

12.
It is estimated that 37 million people worldwide suffer from blindness and 124 million people have impaired vision. While the relatively recently developed therapies, antivascular endothelial growth factor inhibitors for the treatment of age-related macular degeneration, and prostaglandin analogues for the treatment of glaucoma are beneficial for some patients, there are many individuals with sight-threatening diseases for whom no effective pharmacological therapy is available. For many of these diseases, the molecular mechanisms remain to be comprehensively elucidated, thus precluding the design of successful therapies against specific pathological targets. The current review summarises recent attempts to elucidate molecular mechanisms of ocular diseases, including diabetic retinal disease, age-related macular degeneration and inherited blindness using proteomic methodologies. A novel hypothesis can be generated from global protein expression analysis of disease tissue, which can then be addressed with cellular and in vivo functional studies. For example, the identification of extracellular carbonic anhydrase from the vitreous of diabetic retinopathy patients using MS based proteomics led to the elucidation of a new pathway involved in intraretinal edema, which could be inhibited by a number of agents targeting different proteins in this pathway in relevant animal models. The potential of protein biomarkers for diagnosis and the identification of novel disease mechanisms are also discussed.  相似文献   

13.
We present a computational model that highlights the role of basal ganglia (BG) in generating simple reaching movements. The model is cast within the reinforcement learning (RL) framework with correspondence between RL components and neuroanatomy as follows: dopamine signal of substantia nigra pars compacta as the temporal difference error, striatum as the substrate for the critic, and the motor cortex as the actor. A key feature of this neurobiological interpretation is our hypothesis that the indirect pathway is the explorer. Chaotic activity, originating from the indirect pathway part of the model, drives the wandering, exploratory movements of the arm. Thus, the direct pathway subserves exploitation, while the indirect pathway subserves exploration. The motor cortex becomes more and more independent of the corrective influence of BG as training progresses. Reaching trajectories show diminishing variability with training. Reaching movements associated with Parkinson's disease (PD) are simulated by reducing dopamine and degrading the complexity of indirect pathway dynamics by switching it from chaotic to periodic behavior. Under the simulated PD conditions, the arm exhibits PD motor symptoms like tremor, bradykinesia and undershooting. The model echoes the notion that PD is a dynamical disease.  相似文献   

14.
Molecular chaperones play a key role in normal muscle function and during physiological adaptations to extensive exercise and numerous forms of cellular stress. The various classes of HSPs and related chaperones are also involved in the molecular pathogenesis of a large number of neuromuscular diseases. Several MS-based proteomic studies have recently shown that the expression levels of molecular chaperones are severely altered in dystrophin-deficient muscles. Dystrophin isoform Dp427 (where Dp427 is dystrophin protein of 427 kDa) is a large membrane cytoskeletal protein and its deficiency is the primary underlying cause of Duchenne muscular dystrophy. Current efforts have focused on the establishment of a comprehensive biomarker signature of dystrophinopathy in order to improve diagnostic methods, establish reliable prognostic factors and identify novel therapeutic targets. Following an introduction into the biology of HSPs and their general role in skeletal muscle, this review outlines the proteomic profiling of molecular chaperones in dystrophinopathy. The focus is especially on the molecular fate of HSPs cardiovascular HSP (HSPB7), αBC (HSPB5), HSP70 (HSPA) and HSP90 (HSPC) in dystrophin-deficient muscles and their involvement in progressive muscular dystrophy. Furthermore, the potential usage of distinct chaperones as disease markers of secondary pathobiochemical changes for the evaluation of novel treatment options is discussed.  相似文献   

15.
Multiple sclerosis affects more than 2.5 million people worldwide. Although multiple sclerosis was described almost 150 years ago, there are many knowledge gaps regarding its etiology, diagnosis, prognosis, and pathogenesis. Multiple sclerosis is an inflammatory, demyelinating, neurodegenerative disease of the CNS. During the last several decades, experimental models of multiple sclerosis have contributed to our understanding of the inflammatory disease mechanisms and have aided drug testing and development. However, little is known about the neurodegenerative mechanisms that operate during the evolution of the disease. Currently, all therapeutic approaches are primarily based on the inflammatory aspect of the disease. During the last decade, proteomics has emerged as a promising tool for revealing molecular pathways as well as identifying and quantifying differentially expressed proteins. Therefore, proteomics may be used for the discovery of biomarkers, potential drug targets, and new regulatory mechanisms. To date, a considerable number of proteomics studies have been conducted on samples from experimental models and patients with multiple sclerosis. These data form a solid base for further careful analysis and validation.  相似文献   

16.
Alzheimer's disease (AD) is an age-related neurodegenerative disease. AD is characterized by the presence of senile plaques, neurofibrillary tangles, and synaptic loss. Amyloid β-peptide (Aβ), a component of senile plaques, has been proposed to play an important role in oxidative stress in AD brain and could be one of the key factors in the pathogenesis of AD. In the present review, we discuss some of the AD animal models that express Aβ, and compare the proteomics-identified oxidatively modified proteins between AD brain and those of Aβ models. Such a comparison would allow better understanding of the role of Aβ in AD pathogenesis thereby helping in developing potential therapeutics to treat or delay AD.  相似文献   

17.
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.  相似文献   

18.
Disorders of the basal ganglia and the extrapyramidal motor system exhibit an imbalance of neurotransmitter concentrations in affected neurons. For three synapses with dopamine, acetylcholine, and gamma-amino butyric acid (GABA), mathematical models of synaptic transmission are developed. To describe the kinetics of transmitter substances, compartment analysis is used. Membrane potential behaviour is described by the Hodgkin-Huxley equations with an additional equation accounting for a presynaptic calcium current mediating transmitter release. At the postsynaptic site, activated receptor molecules control the activity of ion channels, eliciting either inhibitory or excitatory postsynaptic potentials. A simple model of the feedback loop connecting the caudate nucleus and the substantia nigra is simulated on a digital computer using the simulation language ACSL. A comparison of the control case with a model of Parkinson's disease shows a shift of eigenvalues towards zero in the diseased state.  相似文献   

19.
The aging aorta exhibits structural and physiological changes that are reflected in the proteome of its component cells types. The advance in proteomic technologies has made it possible to analyze the quantity of proteins associated with the natural history of aortic aging. These alterations reflect the molecular and cellular mechanisms of aging and could provide an opportunity to predict vascular health. This paper focuses on whether discoveries stemming from the application of proteomic approaches of the intact aging aorta or vascular smooth muscle cells can provide useful insights. Although there have been limited studies to date, a number of interesting proteins have been identified that are closely associated with aging in the rat aorta. Such proteins, including milk fat globule-EGF factor 8, matrix metalloproteinase type-2, and vitronectin, could be used as indicators of vascular health, or even explored as therapeutic targets for aging-related vascular diseases.  相似文献   

20.
The kidney glomerulus is the site of plasma filtration and production of primary urine in the kidney. The structure not only plays a pivotal role in ultrafiltration of plasma into urine but also is the locus of kidney diseases progressing to chronic renal failure. Patients afflicted with these glomerular diseases frequently progress to irreversible loss of renal function and inevitably require replacement therapies. The diagnosis and treatment of glomerular diseases are now based on clinical manifestations, urinary protein excretion level, and renal pathology of needle biopsy specimens. The molecular mechanisms underlying the progression of glomerular diseases are still obscure despite a great number of clinical and experimental studies. Proteomics is a particularly promising approach for the discovery of proteins relevant to physiological and pathophysiological processes, and has been recently employed in nephrology. Although until now most efforts of proteomic analysis have been conducted with urine, the biological fluid that is easily collected without invasive procedures, proteomic analysis of the glomerulus, the tissue most proximal to the disease loci, is the most straightforward approach. In this review, we attempt to outline the current status of clinical proteomics of the glomerulus and provide a perspective of protein biomarker discovery of glomerular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号