首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Monochlorobenzene (MCB), dichlorobenzenes (DCBs), and 1,2,4-trichlorobenzene (124TCB) dechlorination experiments in water were carried out with freshly synthesized Pd/Fe particles. The pre- and postreacted Pd/Fe samples were characterized by applying various analytical techniques (XRD, SEM, TEM, and XPS). Chlorinated benzenes could be completely reduced by the Pd/Fe to benzene and the reaction followed the pseudo-first-order kinetics. The reaction rates followed the order TCB < DCBs < MCB, while among the DCBs the order was 1,4-dichlorobenzene >1,3-dichlorobenzene > or = 1,2-dichlorobenzene. Insignificant reactions were observed with the unpalladized iron, suggesting that Pd was the only reactive site in the Pd/Fe particles. The aged Pd/Fe particles exhibited significant decrease in its dechlorination reactivity. The loss of Pd/Fe reactivity could be due to Pd dislodgment from the aged Pd/Fe particles and Pd islets encapsulation by the iron oxides film developed over aging period. Reactivity of the aged Pd/Fe could be only partially restored after HCI treatment, while regeneration with the NaBH4 reduction method could not restore its activity, although zerovalent state of the iron was reinstated.  相似文献   

3.
Polybrominated diphenyl ethers (PBDEs) are a new class of global, persistent, and toxic contaminants, which need proper remediation technologies. PBDE degradation in the environment is not well understood. In this study, degradation of PBDEs with zerovalent iron was investigated with six BDEs, substituted with one to 10 bromines. Within 40 days 92% of BDE congener 209 was transformed into lower bromo congeners. During the initial reaction period of BDE 209 (<5 days), hexa- to heptabromo BDEs were the most abundant products, but tetra- to pentabromo congeners were dominant after 2 weeks. The amount of mono- to tribromo BDEs was steadily increased during the experiments. BDEs 28, 47, 66, and 100 also showed a stepwise accumulation of lower bromo congeners. No oxidation products were detected in all experiments. The results showed that a stepwise debromination from n-bromoto (n-1)-bromodiphenyl ethers was the dominant reaction in all congeners. The reaction rate constants of lower bromo BDEs decreased as the number of bromines decreased. The initial reductive debromination rate constants were positively correlated with the heats of formation of BDEs. The preferential accumulation of specific congeners was observed in the experiment with BDEs 28, 47, 66, and 100, where the most abundant products were BDEs 15, 28, 37, and 47, respectively. Reactions proceeded to form more stable and less brominated products that have lower heats of formation. Almost all the possible isomers from a specific parent BDE were found in all the experiments, which was probably due to the small difference of heat of formation between the products (2-5 kcal/mol). Reactions of all congeners proceeded fast at the initial phase (<5 days) followed by a slow reaction. The rate of reductive debromination of BDE 209 was slower with environmentally relevant sulfide minerals (iron sulfide and sodium sulfide). However, the product congener pattern, produced by sulfide mineral catalysis, was nearly similar with that of zerovalent iron treatment. This may be a possible source of lower brominated BDEs in the environment. Debromination of PBDEs by zerovalent iron has high potential values for remediation of PBDEs in the environment.  相似文献   

4.
Nanoscale zerovalent iron (nZVI) has increasingly been used for environmental remediation and in toxic waste treatment. Most applications exploit its large surface area and high reactivity, the latter being a function of zerovalent iron content. In this work, temperature programmed reduction was applied to measure oxygen in nZVI. Iron oxides in nZVI were reduced by hydrogen to form metallic iron and water, which was then measured with an online mass spectrometer to determine oxygen content of the sample. For fresh nZVI prepared by sodium borohydride reduction of iron salts, average oxygen content was 8.21%. Total iron content was approximately 90.35% by the method of acid digestion; Fe(III) content was estimated at 14.37%, and that of zerovalent iron [Fe(0)] at 75.98%. The oxygen content quickly increased to 26.14% after purging with oxygen for four hours. Several other techniques were also used to characterize the iron nanoparticles. High resolution TEM provided direct evidence of the oxide shell structure and indicated that the shell thickness was predominantly in the range of 2-4 nm. The surface elemental composition was determined from high-resolution X-ray photoelectron spectroscopy. The nZVI oxygen content results fill a knowledge gap on nZVI composition.  相似文献   

5.
In the presence of oxygen, organic compounds can be oxidized by zerovalent iron or dissolved Fe(II). However, this process is not a very effective means of degrading contaminants because the yields of oxidants are usually low (i.e., typically less than 5% of the iron added is converted into oxidants capable of transforming organic compounds). The addition of polyoxometalate (POM) greatly increases the yield of oxidants in both systems. The mechanism of POM enhancement depends on the solution pH. Under acidic conditions, POM mediates the electron transfer from nanoparticulate zerovalent iron (nZVI) or Fe(II) to oxygen, increasing the production of hydrogen peroxide, which is subsequently converted to hydroxyl radical through the Fenton reaction. At neutral pH values, iron forms a complex with POM, preventing iron precipitation on the nZVI surface and in bulk solution. At pH 7, the yield of oxidant approaches the theoretical maximum in the nZVI/O2 and the Fe(II)/O2 systems when POM is present, suggesting that coordination of iron by POM alters the mechanism of the Fenton reaction by converting the active oxidant from ferryl ion to hydroxyl radical. Comparable enhancements in oxidant yields are also observed when nZVI or Fe(II) is exposed to oxygen in the presence of silica-immobilized POM.  相似文献   

6.
Nanoscale zerovalent iron, n-ZVI, was found to be highly effective in reductively debrominating decabromodiphenyl ether (BDE209) at ambient conditions and without the catalysis of noble metals. A method was developed to immobilize n-ZVI particles on a cation-exchange resin. The n-ZVI coated resin was then mixed with BDE209 in a water/ acetone (1:1) solution, and the reaction was allowed to proceed for up to 10 days. The first-order rate constant of BDE209 disappearance was estimated to be 0.28 - 0.04 h(-1). The debromination was found to be stepwise, and less-brominated congeners were produced with increasing reaction time. Dechlorination of decachlorobiphenyl (PCB209) was also investigated, but the reaction rate was much slower than the debromination of BDE209. Identification of the reaction products was highly challenging and was assisted by regression equations between experimental and reference gas chromatographic relative retention times, with confirmation by high-resolution mass spectrometry and reference to quantitative structure retention relationships. For randomly selected PBDE and PCB congeners, the net charges of individual atoms were calculated using the quantum chemical computation to explore the difference in relative vulnerability of halogens at different substitution positions between PBDEs and PCBs.  相似文献   

7.
The atmospheric transport of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) was compared by measuring concentrations in air and deposition on an island located in the central basin of the Baltic Sea. Median sigmaPBDE and sigmaPCB concentrations (gaseous + particle) were 8.6 and 7.4 pg m(-3), respectively. Airborne PCBs were mainly found in the gaseous phase, while most of the PBDEs were detected on particles, which agrees with predicted particle/gas distributions. SigmaPBDE levels were dominated by the decabrominated BDE209 followed bythe tetrabrominated BDE47 and pentabrominated BDE99. BDE209 is a marker for the environmental distribution of the commercial deca-BDE formulation (>99.5% BDE209), whereas BDE47 and BDE99 are markers for the commercial penta-BDE mixture. General correlations between PBDEs and PCBs suggested similarities in sources and transport mechanism, while more detailed examination of the data identified notable behaviors and exceptions. Differences in regression slopes among tetra-, penta-, and decabrominated PBDEs may reflect different transport processes and the change in usage pattern. Tetra- and pentabrominated PBDEs may originate from secondary sources such as air surface exchange in a manner similar to that of the PCBs, while the deca-BDE209 formulation still has primary sources. The tribrominated BDE17 was also detected and is proposed to be a breakdown product due to atmospheric debromination processes. PBDEs had higher washout ratios than PCBs, explaining their higher concentrations compared to PCBs in precipitation (median of 6.0 and 0.5 ng L(-1) for sigmaBDE and sigmaPCB concentrations ("dissolved" + particle), respectively) than in air. The calculated yearly deposition of PBDEs and PCBs indicated that the atmospheric input of PBDEs to the Baltic Proper is currently exceeding that of the PCBs by a factor of 40, while that of the PCBs is decreasing.  相似文献   

8.
Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and brominated flame retardants (BFRs) were investigated in captive giant and red panda tissues from China. The total concentrations of OCPs, PCBs, and polybrominated diphenyl ethers (PBDEs) in tissues ranged from 16.3 to 888 ng/g lipid weight (lw), 24.8 to 854 ng/g lw, and 16.4 to 2158 ng/g lw, respectively. p,p'-DDE and beta-HCH were major OCP contaminants. PCBs 99, 118, 153/132, 170, 180, and 209 were the major contributing congeners determined. Among PBDEs, congener BDE-209 was the most frequent and abundant, followed by BDE-206, BDE-208, BDE-207, BDE-203, BDE-47, and BDE-153. Decabromodiphenyl ethane (DeBDethane) was detected in 87 and 71% of the giant and red panda samples with concentrations up to 863 ng/g lw, respectively. The remarkable levels and dominance of BDE-209 and DeBDethane may relate to significant production, usage, or disposal of BFRs in China. The positive significant correlation between concentrations of PBDEs and PCBs in captive pandas may suggest that the exposure routes of PBDEs and PCBs to panda are similar. To our knowledge, this is the first report of the occurrence of DeBDethane in captive wildlife samples. Therefore, further studies are warranted to better understand DeBDethane production, transport, uptake, and toxicological effect.  相似文献   

9.
Polybrominated diphenyl ethers (PBDEs) have been used extensively over the past two decades as flame retardants in most types of polymers. Many measurements of PBDEs in various environmental matrices from Sweden, Holland, Japan, and elsewhere have been reported, but few measurements are available for North America. PBDEs in 21 coho and chinook salmon taken from Lake Michigan tributaries in 1996 were measured for this study. The salmon samples were extracted and initially analyzed for polychlorinated biphenyl (PCB) congeners. It was demonstrated for these samples that the same extract fraction contains PBDEs. Six PBDE congeners were observed in all 21 samples, and the rank order of concentration of these congeners was similar to that in commercial mixtures of PBDEs. The average concentration across all samples of the sum of PBDE congeners was 80.1 ng/g of wet weight or 2,440 ng/g of lipid. This is much less than the average sum PCB concentration (1,450 ng/g of wet weight; 43,100 ng/g of lipid). However, the average concentration of the most abundant PBDE congener (IUPAC BDE-49: 52.1 ng/g wet, 1,590 ng/g of lipid) was about one-third of the average concentration of the most abundant PCB congener (IUPAC CB-153: 149 ng/g wet, 4,550 ng/g of lipid). On the basis of an extensive literature survey, the concentrations of PBDEs reported here are among the highest in the world for salmon in open waters. The concentrations of PBDEs and PCBs are both correlated with fish length and mass, but not with lipid content. The concentrations of PBDEs and PCBs are highly correlated in individual fish, implying that PBDEs are as prevalent as PCBs in Lake Michigan.  相似文献   

10.
Water, sediment, and aquatic species including plankton, fish, and turtles were collected from a small lake in Beijing, which receives effluent discharged from a large sewage treatment plant (STP). The samples were examined to investigate polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) releases from a STP and their distributions in the lake. The accumulations of sigma 12PBDEs and BDE-209 in the sediment were 62.3 and 1150 ng/cm2, respectively, while that of sigma PCBs was 99.3 ng/cm2. BDE-209 was detected in more than 50% of the aquatic species. A strong linear correlation (R2 = 0.92) was found between sigma 12PBDEs and sigma PCBs levels in aquatic species but not in sediments. The different PBDE congener profiles in sediments and biota samples suggest metabolic debromination in the sampled fish. Bioaccumulations of PBDEs and PCBs were found in aquatic species.The logarithm bioaccumulation factor (BAF) decreases with the number of bromines in PBDEs molecules, while the log BAF versus the number of chlorines in PCBs appears to be parabolic. Biomagnifications of these compounds were not obvious in the food web by analysis of the relationship between sigma 12PBDEs or sigma PCBs levels and the trophic level of aquatic biota species.  相似文献   

11.
In P.R. China, electronic waste (e-waste) from across the world is dismantled and discarded. Concentrations of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were measured in serum from residents of an e-waste dismantling region (Guiyu, South China), where 80% of families work in e-waste recycling, and compared to a matching cohort from a nearby region where the fishing industry dominates (Haojiang). Serum concentrations of PBDEs and OCPs, but not PCBs, were significantly different in the two regions: the median sigmaPBDE concentration was 3 times higher in Guiyu than Haojiang, whereas the opposite was true for dichloro-diphenyl-trichloroethane (DDT). PBDEs typically accounted for 46% of the total organohalogen chemicals in samples from Guiyu, but 8.7% in Haojiang. The median BDE-209 concentration in Guiyu was 50-200 times higher than previously reported in occupationally exposed populations. The highest BDE-209 concentration was 3100 ng/g lipid, the highest yet reported in humans. Serum PBDE concentrations did not correlate with PCBs or OCPs, whereas PCBs and OCPs showed positive correlations, suggesting that sources of PBDEs to humans are different from PCBs and OCPs. The levels of PBDEs in individuals from Haojiang are possibly related to the recycling activity at Guiyu, through atmospheric transport.  相似文献   

12.
This study demonstrates the inactivation of MS2 coliphage (MS2) by nano particulate zerovalent iron (nZVI) and ferrous ion (Fe[II]) in aqueous solution. For nZVI, the inactivation efficiency of MS2 under air-saturated conditions was greater than that observed under deaerated conditions, indicating that reactions associated with the oxidation of nZVI were mainly responsible for the MS2 inactivation. Under air-saturated conditions, the inactivation efficiency increased with decreasing pH for both nZVI and Fe(II), associated with the pH-dependent stability of Fe(II). Although the Fe(II) released from nZVI appeared to contribute significantly to the virucidal activity of nZVI, several findings suggest that the nZVI surfaces interacted directly with the MS2 phages, leading to their inactivation. First, the addition of 1,10-phenanthroline (a strong Fe(II)-chelating agent) failed to completely block the inactivation of MS2 by nZVI. Second, under deaerated conditions, a linear dose-log inactivation curve was still observed for nZVI. Finally, ELISA analysis indicated that nZVI caused more capsid damage than Fe(II).  相似文献   

13.
Palladium-modified materials have been found to be effective electrodes for the reductive degradation of chlorinated compounds in aqueous solution. This study investigated the electrocatalytic hydrodechlorination (ECH) of polychlorinated biphenyls (PCBs) in solvent/surfactant-aided solutions in a palladium-modified nickel foam electrode using a divided flow-through cell. The reaction pathways of 2,4,5-PCB hydrodechlorination were proposed due to the analysis of intermediates by GC/MS. The mechanism of electrocatalytic reaction on the Pd/Ni foam cathode was examined by studying the effect of surfactant type, sorption behavior of PCBs on the electrode, and current densities on the ECH efficiency of PCBs. The conversion of PCBs was controlled by the micelle structures of the surfactants instead of the charged species. According to the analysis of hydrogen transformation processes on the electrode surface, we propose that the ECH process was initiated by the transfer of highly active hydrogen atoms [H] from the prior polarized Pd particles to the less polarized Pd particles by spillover on the Pd/Ni foam cathode. Therefore, the total available surface was larger than the originally polarized surface, and [H] could smoothly react with PCBs that were adsorbed on the surface. As a result, a high ECH efficiency can be achieved with the Pd/Ni foam electrode.  相似文献   

14.
Reductive dechlorination of carbon tetrachloride (CT) and tetrachloroethylene (PCE) by zerovalent silicon (ZVS, Si0) and the combination of Si0 with metal iron (Fe0) was investigated as potential reductants for chlorinated hydrocarbons. The X-ray photoelectron spectroscopy (XPS) was used to identify the surface characteristics of Si0. CT and PCE can be completely degraded via sequential reductive dechlorination to form lesser chlorinated homologues by Si0. Productions of chloroform (CF) and trichloroethylene (TCE) accounted for 80% of CT and 65% of PCE dechlorination, respectively. The degradation of CT and PCE by Si0 at pH 8.3 followed pseudo-first-order kinetics, and the normalized surface rate constants (k(sa)) were 0.288 and 0.003 L m(-2) h(-1), respectively, which react more efficiently than zerovalent iron in CT and PCE dechlorination. A linear relationship was also established between pH and the k(sa) value. The XPS results showed that the hydrogenated silicon surface and silicon oxides on the silicon surface were removed during the dechlorination processes, thus providing a relatively clean silicon surface for dechlorination reactions. The combination of zerovalent silicon with iron influences both the dechlorination rate and the distribution of products. Sequential reductive dechlorination was still the main reaction for CT dechlorination by Si0/Fe0, while reductive dechlorination and beta-elimination were the dominant reaction pathways for PCE dechlorination with ethane and ethene as the major end products. Also, the combination of silicon and iron constitutes a buffer system to maintain the pH at a stable value. A 0.3 unit of pH changed upon increasing the amount of Fe by a factor of 35 was observed, depicting that Si0 serves as a pH buffer in Si0/Fe0 system during dechlorination processes.  相似文献   

15.
Polychlorinated biphenyls (PCBs) are toxic pollutants notorious for their aquatic and sedimentary prevalence and recalcitrant nature. Bimetallic systems like Pd/Fe have been widely studied for degrading them. Mg, with oxidation potential higher than Fe, has been reported to dechlorinate PCBs in conjunction with K2PdCl6-systems that are distinct from Pd/Mg bimetals. This study primarily aims to evaluate Pd/Mg bimetallic systems for dechlorinating 2-chlorobiphenyl (2-CIBP), a model PCB. Candidacy of Mg is based on its unique corrosion properties that afford synthesis and storage under ambient conditions and application-based advantages. A simple wet-chemistry procedure was developed to synthesize Pd/Mg particles with 0.11-1.62% Pd content and nanoscale Pd-islands as determined by X-ray diffraction (XRD) and environmental scanning electron microscopy (ESEM). Aqueous 2-CIBP matrices were effectively degraded using these particles, the dechlorination kinetics showing linear dependence on the total Pd content. The pH profile obtained with varying bimetallic content led to useful insights into the unique behavior of Mg surface. A carbon mole balance showed 85-105% recoveries. Performance of the Pd/Mg particles in PCB spiked clays and sediment suggests that they may work well in such systems. Finally, a mechanism for PCB dechlorination in Pd/Mg systems was proposed.  相似文献   

16.
Nanoscale zerovalent iron (nZVI)-based nanotechnologies are increasingly being used for environmental remediation; however, the fate and ecotoxicologic effects of nZVI remain unclear. Larvae of medaka fish (Oryzias latipes) underwent 3-14 days' aqueous exposure to thoroughly characterized solutions containing carboxymethyl cellulose (CMC)-stabilized nZVI, bare nZVI, nanoscale iron oxide (nFe(3)O(4)) or ferrous ion [Fe(II)(aq)] at μg/L-mg/L levels to assess the causal toxic effect(s) of iron nanoparticles (NPs). Acute larval mortality was decreased in the order of Fe(II)(aq) > CMC-nZVI > nZVI > nFe(3)O(4). CMC-nZVI (100 mg/L) increased hypoxia and reactive oxygen species (ROS) and Fe(II)(aq) production, thus increasing mortality and oxidative stress response as compared with unstabilized nZVI. Additionally, nFe(3)O(4) and nZVI were more bioavailable than suspended CMC-nZVI or Fe(II)(aq). Antioxidant activities were significantly altered by induced intracellular ROS levels in larvae with subchronic exposure to nFe(3)O(4) or Fe(II)(aq) at environmentally relevant concentrations (0.5-5 mg/L). We report on different organizational biomarkers used for rapidly assessing the lethal and sublethal toxicity of nZVI and its stabilized or oxidized products. The toxicity results implicate a potential ecotoxicological fate and impact of nZVI on the aquatic environment.  相似文献   

17.
Asia is of global importance economically, yet data on ambient persistent organic pollutant levels are still sparse for the region, despite international efforts under the Stockholm Convention to identify and reduce emissions. A large-scale passive air sampling survey was therefore conducted in Asia, specifically in China, Japan, South Korea, and Singapore. Polyurethane foam disks were deployed simultaneously at 77 sites, between Sept 21 and Nov 16, 2004, and analyzed for polychlorinated biphenyls (PCBs), organochlorine compounds (hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), chlordane), and polybrominated diphenyl ethers (PBDEs). The meteorological conditions prevailing in the region at this time facilitated the assessment of local/regional differences in atmospheric emissions, because large-scale advection effects due to monsoons or dust storms did not occur. Air concentrations estimated assuming an average sampler uptake rate of 3.5 m3/day ranged as follows (pg m(-3)): PCBs, 5-340; HCB, 10-460; DDTs, 0.4-1800; chlordanes, 1-660; PBDEs, < 0.13-340. South Korea and Singapore generally had regionally low concentrations. Elevated concentrations of PCBs, DDTs, and HCB occurred at sites in China, higher than reported in a similar recent sampling campaign in Europe. Chlordane was highest in samples from Japan (which also had elevated levels of PCBs and DDTs) and was also elevated in some Chinese locations. PBDE levels were generally low in the region.  相似文献   

18.
There is extensive literature documenting the bioaccumulation of persistent organic pollutants in the marine environment, but relatively little data are available on contamination pathways in aquaculture systems such as that for farmed salmon. In recent years,the salmon industry has grown significantly in Europe. This study reports on the determination of a wide range of polychlorinated biphenyls (PCBs), organochlorine pesticides, and polybrominated diphenyl ethers (PBDEs) in farmed and wild European Atlantic salmon fish, aquaculture feeds, and fish oils used to supplement the feeds. The study confirms previous reports of relatively high concentrations of PCBs and indicates moderate concentrations of organochlorine pesticides and PBDEs in farmed Scottish and European salmon. Concentrations of the selected persistent organic pollutants varied among the samples: PCBs (salmon, 145-460 ng/g lipid; salmon feeds, 76-1153 ng/g lipid; fish oils, 9-253 ng/g lipid), S DDTs (salmon, 5-250 ng/g lipid; salmon feeds, 34-52 ng/g lipid; fish oils, 11-218 ng/g lipid), and PBDEs (salmon, 1-85 ng/g lipid: salmon feeds, 8-24 ng/g lipid; fish oils, ND-13 ng/g lipid). Comparison of the samples for all groups of contaminants, except for HCHs, showed an increase in concentration in the order fish oil < feed < salmon. Homologue profiles were similar, with an increase in contribution of hepta- and octa-PCBs in the fish, and profiles of DDTs were similar in all three types of samples. With a constant contribution to the total PCB content, the ICES 7 PCBs appear to be reliable predictors of the PCB contamination profile through all the samples. For PBDEs, BDE 47 dominated the profiles, with no significant difference in the PBDE profiles for the three matrixes. Samples with higher PCB contents generally showed higher levels of the pesticide residues, but this was not the case with the PBDEs, indicating the existence of different pollution sources.  相似文献   

19.
The present study clearly indicated possible prolonged and chronic marine pollution by polybrominated diphenyl ethers (PBDEs) unless the international regulatory measures are reinforced substantially. Fat tissues of female northern fur seals (Callorhinus ursinus), collected at 10 time periods between 1972 and 1998 from the Pacific coast of northern Japan, were analyzed for PBDEs and organochlorine compounds (OCs). PCBs and DDTs were the predominant contaminants in the fur seal samples. PBDEs were detected in all the samples analyzed, the values ranging from 0.33 to 100 ng/g lipid wt. with predominance of BDE-47. The lowest PBDE levels were in the fur seals collected in 1972, with the peak concentration around 1991-1994 and then decreased to about 50% in 1997-1998. Compositions of higher brominated congeners increased since 1972, while some lower brominated congeners decreased, implying a change in the pattern of use, particularly the increased use of highly brominated diphenyl ethers during 1972-1998. In the meantime, PCB compositions in fur seals showed no temporal variation, suggesting a continuous input of PCBs into the marine environment in significant quantities. As peak concentrations of PBDEs occurred later than OCs, it is essential to follow up the patterns of PBDEs pollution that may be of great concern in the future. To our knowledge, this is the first report on the contamination by PBDEs in marine mammals from the Asia-Pacific waters.  相似文献   

20.
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), especially the 2,3,7,8-substituted congeners, are extremely toxic, persistent, and recalcitrant to remediation. Dechlorination of PCDD/Fs by zerovalent iron (ZVI) is thermodynamically feasible, but useful rates of reaction have not been previously reported. Here we show that ZVI (both micro- and nanosized ZVI, without palladization) dechlorinates PCDD congeners with four or more chlorines in aqueous systems, but the reaction is too slow to achieve complete dechlorination within a practical period of time. In contrast, palladized nanosized ZVI (Pd/nFe) rapidly dechlorinates PCDDs, including the mono- to tetra-chlorinated congeners. The rate of 1,2,3,4-tetrachloro dibenzo-p-dioxin (1,2,3,4-TeCDD) degradation using Pd/nFe was about 3 orders of magnitude faster than 1,23,4-TeCDD degradation using unpalladized ZVI. The distribution of products obtained from dechlorination of 1,2,3,4-TeCDD suggests that palladization shifts the pathways of contaminant degradation toward a greater role of H atom transfer rather than electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号