首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 degrees C. Comparison of extraction data and X-ray diffraction results confirmed that hematite and goethite were the primary transformation products. HFO transformation was significantly retarded at or above an arsenate solid loading of 29 455 mg As/kg HFO. However, HFO transformation proceeded at a significant rate for arsenate solid loadings of 4208 and 8416 mg As/kg HFO. At a solid loading of 8416 mg As/kg HFO, XRD results suggested arsenate primarily partitioned to hematite. Comparison of HFO transformation rates observed in this research to rates obtained from the literature at pH 6 and temperatures ranging from 24 to 70 degrees C suggests that arsenate stabilization could be realized in oxic environments with a significantfraction of iron (hydr)oxides. While this process has not been documented in natural systems, the predicted half-life for transformation of an arsenic-bearing HFO is approximately 300 days at 25 degrees C at solid loading < 8415 mg As/kg HFO. The projected time frame for arsenate stabilization indicates this process should be considered during development of conceptual and analytical models describing arsenic fate and transport in oxic systems containing reactive iron (hydr)oxides. The likelihood of this process would depend on the chemical dynamics of the soil or sediment system relative to iron (hydr)oxide precipitation-dissolution reactions and the potential retarding/competing influence of ions such as silicate and organic matter.  相似文献   

2.
In this study, a simplified and effective method was tried to immobilize iron oxide onto a naturally occurring porous diatomite. Experimental resultsfor several physicochemical properties and arsenic edges revealed that iron oxide incorporated into diatomite was amorphous hydrous ferric oxide (HFO). Sorption trends of Fe (25%)-diatomite for both arsenite and arsenate were similar to those of HFO, reported by Dixit and Hering (Environ. Sci. Technol. 2003, 37, 4182-4189). The pH at which arsenite and arsenate are equally sorbed was 7.5, which corresponds to the value reported for HFO. Judging from the number of moles of iron incorporated into diatomite, the arsenic sorption capacities of Fe (25%)-diatomite were comparable to or higher than those of the reference HFO. Furthermore, the surface complexation modeling showed that the constants of [triple bond]SHAsO4- or [triple bond]SAsO4(2-) species for Fe (25%)-diatomite were larger than those reference values for HFO or goethite. Larger differences in constants of arsenate surface species might be attributed to aluminum hydroxyl ([triple bond]Al-OH) groups that can work better for arsenate removal. The pH-controlled differential column batch reactor (DCBR) and small-scale column tests demonstrated that Fe (25%)-diatomite had high sorption speeds and high sorption capacities compared to those of a conventional sorbent (AAFS-50) that is known to be the first preference for arsenic removal performance in Bangladesh. These results could be explained by the fact that Fe (25%)-diatomite contained well-dispersed HFO having a great affinity for arsenic species and well-developed macropores as shown by scanning electron microscopy (SEM) and pore size distribution (PSD) analyses.  相似文献   

3.
Hydrous ferric oxide (HFO) and titanium dioxide exhibit similar strong attachment of many adsorbates including biomolecules. Using surface complexation modeling, we have integrated published adsorption data for glutamate on HFO over a range of pH and surface coverage with published in situ ATR-FTIR studies of glutamate speciation on amorphous titanium dioxide. The results indicate that glutamate adsorbs on HFO as a deprotonated divalent anion at pH 3-5 and 0.2 micromol x m(-2) in the form of chelating-monodentate and bridging-bidentate species attached to the surface through three or four of the carboxylate oxygens, respectively. The amine group may interact weakly with the surface. However, at similar pH values and higher surface coverages, glutamate adsorbs mainly as a monovalent or divalent anion chelated to the surface by the gamma-carboxylate group. In this configuration the alpha-carboxylate and amine groups might be free to interact above the surface with the free ends of adjacent glutamates, suggesting a possible mechanism for chiral self-organization and peptide bond formation.  相似文献   

4.
The reductive biotransformation of a Ni(2+)-substituted (5 mol %) hydrous ferric oxide (NiHFO) by Shewanella putrefaciens, strain CN32, was investigated under anoxic conditions at circumneutral pH. Our objectives were to define the influence of Ni2+ substitution on the bioreducibility of the HFO and the biomineralization products formed and to identify biogeochemical factors controlling the phase distribution of Ni2+ during bioreduction. Incubations with CN32 and NiHFO were sampled after 14 and 32 d, and both aqueous chemistry and solid phases were characterized. By comparison of these results with a previous study (Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Dong, H.; Onstott, T. C.; Hinman, N. W.; Li, S. W. Geochim. Cosmochim. Acta 1998, 62, 3239-3257), it was concluded that coprecipitated/sorbed Ni2+ inhibited the bioreduction of HFO through an undefined chemical mechanism. M?ssbauer spectroscopy allowed analysis of the residual HFO phase and the identity and approximate mass percent of biogenic mineral phases. The presence of AQDS, a soluble electron shuttle that obviates need for cell--oxide contact, was found to counteract the inhibiting effect of Ni2+. Nickel was generally mobilized during bioreduction in a trend that correlated with final pH, except in cases where PO4(3-) was present and vivianite precipitation occurred. CN32 promoted the formation of Ni(2+)-substituted magnetite (Fe2IIIFe(1-x)IINixIIO4) in media with AQDS but without PO4(3-). The formation of this biogenic coprecipitate, however, had little discernible impact on final aqueous Ni2+ concentrations. These results demonstrate that coprecipitated Ni can inhibit dissimilatory microbial reduction of amorphous iron oxide, but the presence of humic acids may facilitate the immobilization of Ni within the crystal structure of biogenic magnetite.  相似文献   

5.
Arsenic is of concern in water treatment because of its health effects. This research focused on incorporating hydrous ferric oxide (HFO) into granular activated carbon (GAC) for the purpose of arsenic removal. Iron was incorporated into GAC via incipient wetness impregnation and cured at temperatures ranging from 60 to 90 degrees C. X-ray diffractions and arsenic sorption as a function of pH were conducted to investigate the effect of temperature on final iron oxide (hydroxide) and their arsenic removal capabilities. Results revealed that when curing at 60 degrees C, the procedure successfully created HFO in the pores of GAC, whereas at temperatures of 80 and 90 degrees C, the impregnated iron oxide manifested a more crystalline form. In the column tests using synthetic water, the HFO-loaded GAC prepared at 60 degrees C also showed higher sorption capacities than media cured at higher temperatures. These results indicated that the adsorption capacity for arsenic was closely related to the form of iron (hydr)oxide for a given iron content For the column test using a natural groundwater, HFO-loaded GAC (Fe, 11.7%) showed an arsenic sorption capacity of 26 mg As/g when the influent contained 300 microg/L As. Thus, the preloading of HFO into a stable GAC media offered the opportunity to employ fixed carbon bed reactors in water treatment plants or point-of-use filters for arsenic removal.  相似文献   

6.
Despite the ubiquity of poorly crystalline ferric hydrous oxides (HFO, or ferrihydrite) in natural environments, stable Fe isotopic fractionation between HFO and other Fe phases remains unclear. In particular, it has been difficult to determine equilibrium Fe isotope fractionation between aqueous Fe(II) and HFO due to fast transformation of the latter to more stable minerals. Here we used HFO stabilized by the presence of dissolved silica (2.14 mM), or a Si-HFO coprecipitate, to determine an equilibrium Fe(II)-HFO fractionation factor using a three-isotope method. Iron isotope exchange between Fe(II) and HFO was rapid and near complete with the Si-HFO coprecipitate, and rapid but incomplete for HFO in the presence of dissolved silica, the latter case likely reflecting blockage of oxide surface sites by sorbed silica. Equilibrium Fe(II)-HFO (56)Fe/(54)Fe fractionation factors of -3.17 ± 0.08 (2σ)‰ and -2.58 ± 0.14 (2σ)‰ were obtained for HFO plus silica and the Si-HFO coprecipitate, respectively. Structural similarity between ferrihydrite and hematite, as suggested by spectroscopic studies, combined with the minor isotopic effect of dissolved silica, imply that the true equilibrium Fe(II)-HFO (56)Fe/(54)Fe fractionation factor in the absence of silica may be ~-3.2‰. These results provide a critical interpretive context for inferring the stable isotope effects of Fe redox cycling in nature.  相似文献   

7.
Individual and competitive adsorption of arsenate and phosphate were studied on a high-surface-area Fe/Mn-(hydr)oxide sorbent with surface and bulk properties similar to those of two-line ferrihydrite. It has maximum adsorption densities of 0.42 micromol As m(-2) at neutral pH and 1.24 micromol As m(-2) at pH 3. A surface complexation model (SCM) that used the diffuse double layer model was developed that could simulate single and binary sorbate adsorption over pH 4-9. The predominant adsorbed arsenate and phosphate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The model initially overpredicted the inhibition of arsenate adsorption by the presence of phosphate. The overprediction was resolved by separating surface sites into two types: ones to which both arsenate and phosphate bind and a smaller number to which only phosphate binds. The modified model predicted the competitive adsorption of arsenate and phosphate over pH 4-9 at total As concentrations of 6.67 and 80.1 microM and a total P concentration of 129 and 323 microM. The model may be used to predict arsenic adsorption to the sorbent for a given water source based on solution chemistry.  相似文献   

8.
The sorption of uranyl onto hydrous ferric oxide (HFO) or hematite was measured by discontinuously titrating the suspensions with uranyl at pH 5.9, 6.8, and 7.8 under Pco2 = 10(-35)atm (sorption isotherms). Batch reactors were used with equilibration times up to 48 days. Sorption of 1 microM uranyl onto HFO was also measured versus pH (sorption edge). A diffuse double layer surface complexation model was calibrated by invoking three sorption species that were consistent with spectroscopic evidence for predominance of bidentate complexes at neutral pH and uranyl-carbonato complexes: > SOH:UO2OH(+1), (> SO)2: UO2CO3(-2), and (> SO)2:(UO2)3(OH)5(-1). The model was consistent with previously published isotherm and edge data. The model successfully predicted sorption data onto hematite, only adjusting for different measured specific surface area. Success in application of the model to hematite indicates that the hydrated surface of hematite has similar sorptive reactivity as HFO.  相似文献   

9.
10.
Bacterial reduction of arsenic(V) and iron(III) oxides influences the redox cycling and partitioning of arsenic (As) between solid and aqueous phases in sediment-porewater systems. Two types of anaerobic bacterial incubations were designed to probe the relative order of As(V) and Fe(III) oxide reduction and to measure the effect of adsorbed As species on the rate of iron reduction, using hydrous ferric oxide (HFO) as the iron substrate. In one set of experiments, HFO was pre-equilibrated with As(V) and inoculated with fresh sediment from Haiwee Reservoir (Olancha, CA), an As-impacted field site. The second set of incubations consisted of HFO (without As) and As(III)- and As(V)- equilibrated HFO incubated with Shewanella sp. ANA-3 wild-type (WT) and ANA-3deltaarrA, a mutant unable to produce the respiratory As(V) reductase. Of the two pathways for microbial As(V) reduction (respiration and detoxification), the respiratory pathway was dominant under these experimental conditions. In addition, As(III) adsorbed onto the surface of HFO enhanced the rate of microbial Fe(III) reduction. In the sediment and ANA-3 incubations, As(V) was reduced simultaneously or prior to Fe(III), consistent with thermodynamic calculations based on the chemical conditions of the ANA-3 WT incubations.  相似文献   

11.
Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (~1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.  相似文献   

12.
The highly ordered mesoporous silica media, SBA-15, was synthesized and incorporated with iron, aluminum, and zinc oxides using an incipientwetness impregnation technique. Adsorption capacities and kinetics of metal-impregnated SBA-15 were compared with activated alumina which is widely used for arsenic removal. Media impregnated with 10% of aluminum by weight (designated to Al10SBA-15) had 1.9-2.7 times greater arsenate adsorption capacities in a wide range of initial arsenate concentrations and a 15 times greater initial sorption rate at pH 7.2 than activated alumina. By employing one- and two-site models, surface complexation modeling was conducted to investigate the relationship between the aluminum oxidation states in different media and adsorption behaviors shown by adsorption isotherms and kinetics since the oxidation phase of aluminum incorporated onto the surface of SBA-15 was Al-O, which has a lower oxidation state than activated alumina (Al2O3). Surface complexation modeling results for arsenate adsorption edges conducted with different pH indicated thatthe monodentate complex (SAsO(4)2-) was dominant in Al10SBA-15, while bidentate complexes (XHAsO4 and XAsO4-) were dominant in activated alumina at pH 7.2, respectively. In kinetic studies at pH 7.2 + 0.02, Al10SBA-15 had only a fast-rate step of initial adsorption, while activated alumina had fast- and slow-rate steps of arsenate adsorption. Therefore, it can be inferred that the monodentate arsenate complex, predominant in Al10SBA-15, leads to faster adsorption rates than bidentate arsenate complexes favored with activated alumina. An arsenate adsorption behavior and arsenate surface complexation were thought to be well explained by aluminum oxidation states and surface structural properties of media.  相似文献   

13.
The mechanism of As(V) removal from aqueous solutions by means of hydrated ferric oxide (HFO)-treated sugarcane bagasse (SCB-HFO) (Saccharum officinarum L.) was investigated. Effects of different parameters, such as pH value, initial arsenic concentration, adsorbent dosage, contact time and ionic strength, on the As(V) adsorption were studied. The adsorption capacity of SCB-HFO for As(V) was found to be 22.1 mg/g under optimum conditions of pH 4, contact time 3 h and temperature 22 °C. Initial As(V) concentration influenced the removal efficiency of SCB-HFO. The desorption of As(V) from the adsorbent was 17% when using 30% HCl and 85% with 1 M NaOH solution. FTIR analyses evidenced two potential binding sites associated with carboxyl and hydroxyl groups which are responsible for As(V) removal. Adsorption, surface precipitation, ion exchange and complexation can be suggested as mechanisms for the As(V) removal from the solution phase onto the surface of SCB-HFO.  相似文献   

14.
The kinetics of As(V) reduction by Shewanella putrefaciens strain CN-32 was investigated in suspensions of 0.2, 2, or 20 g L(-1) ferrihydrite, goethite, or boehmite at low As (10 μM) and lactate (25 μM) concentrations. Experimental data were compared with model predictions based on independently determined sorption isotherms and rates of As(V) desorption, As(III) adsorption, and microbial reduction of dissolved As(V), respectively. The low lactate concentration was chosen to prevent significant Fe(III) reduction, but still allowing complete As(V) reduction. Reduction of dissolved As(V) followed first-order kinetics with a 3 h half-life of As(V). Addition of mineral sorbents resulted in pronounced decreases in reduction rates (32-1540 h As(V) half-life). The magnitude of this effect increased with increasing sorbent concentration and sorption capacity (goethite < boehmite < ferrihydrite). The model consistently underestimated the concentrations of dissolved As(V) and the rates of microbial As(V) reduction after addition of S. putrefaciens (~5 × 10(9) cells mL(-1)), suggesting that attachment of S. putrefaciens cells to oxide mineral surfaces promoted As(V) desorption and thereby facilitated As(V) reduction. The interplay between As(V) sorption to mineral surfaces and bacterially induced desorption may thus be critical in controlling the kinetics of As reduction and release in reducing soils and sediments.  相似文献   

15.
为提高空气气氛下阳离子改性的四氧化三铁(Fe_3O_4)的结构与性能,进一步优化了聚二烯丙基二甲基氯化铵(PDDA)改性的Fe_3O_4的制备工艺。利用X射线衍射仪、粒度分析仪、透射电子显微镜、振动样品磁强计等进行表征与测试,研究了利用化学共沉淀法制备Fe_3O_4纳米粒子的过程中,PDDA在Fe_3O_4晶粒成型的不同阶段进行改性对最终产品质量的影响。结果表明:当PDDA在Fe_3O_4晶粒成型后直接进行改性,其包覆厚度适宜,包覆率约为2.01%;包覆外观均匀,表现为Fe_3O_4纳米粒子均匀分散于PDDA中;得到的磁性复合纳米粒子磁性最强,可高达3.47×10~5A/m。  相似文献   

16.
Formation of ternary complexes between arsenic (As) oxyanions and ferric iron (Fe) complexes of humic substances (HS) is often hypothesized to represent a major mechanism for As-HS interactions under oxic conditions. However, direct evidence for this potentially important binding mechanism is still lacking. To investigate the molecular-scale interaction between arsenate, As(V), and HS in the presence of Fe(III), we reacted fulvic and humic acids with Fe(III) (1 wt %) and equilibrated the Fe(III)-HS complexes formed with As(V) at pH 7 (molar Fe/As ~10). The local (<5 ?) coordination environments of As and Fe were subsequently studied by means of X-ray absorption spectroscopy. Our results show that 4.5-12.5 μmol As(V)/g HS (25-70% of total As) was associated with Fe(III). At least 70% of this As pool was bound to Fe(III)-HS complexes via inner-sphere complexation. Results obtained from shell fits of As K-edge extended X-ray absorption fine structure (EXAFS) spectra were consistent with a monodentate binuclear ((2)C) and monodentate mononuclear ((1)V) complex stabilized by H-bonds (R(As-Fe) = 3.30 ?). The analysis of Fe K-edge EXAFS spectra revealed that Fe in Fe(III)-HS complexes was predominantly present as oligomeric Fe(III) clusters at neutral pH. Shell-fit results complied with a structural motif in which three corner-sharing Fe(O,OH)(6) octahedra linked by a single μ(3)-O bridge form a planar Fe trimer. In these complexes, the average Fe-C and Fe-Fe bond distances were 2.95 ? and 3.47 ?, respectively. Our study provides the first spectroscopic evidence for ternary complex formation between As(V) and Fe(III)-HS complexes, suggesting that this binding mechanism is of fundamental importance for the cycling of oxyanions such as As(V) in organic-rich, oxic soils and sediments.  相似文献   

17.
Kinetics of oxytetracycline reaction with a hydrous manganese oxide   总被引:4,自引:0,他引:4  
Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline < or =tetracycline approximately meclocycline < chlortetracycline. The initial rate of chlortetracycline degradation by MnO2 was substantially larger than that of the other tetracycline antibiotics investigated. MnO2 reactivity toward oxytetracycline decreased with time; a retarded rate equation was used to describe oxytetracycline reaction with MnO2 under declining rate conditions. This study indicates that natural manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.  相似文献   

18.
Arsenic sorption onto maghemite potentially contributes to arsenic retention in magnetite-based arsenic removal processes because maghemite is the most common oxidation product of magnetite and may form a coating on magnetite surfaces. Such a sorption reaction could also favor arsenic immobilization at redox boundaries in groundwaters. The nature of arsenic adsorption complexes on maghemite particles, at near-neutral pH under anoxic conditions, was investigated using X-ray absorption fine structure (XAFS) spectroscopy at the As K-edge. X-ray absorption near edge structure spectra indicate that As(III) does notoxidize after 24 h in any of the sorption experiments, as already observed in previous studies of As(III) sorption on ferric (oxyhydr)oxides under anoxic conditions. The absence of oxygen in our sorption experiments also limited Fenton oxidation of As(III). Extended XAFS (EXAFS) results indicate that both As(III) and As(V) form inner-sphere complexes on the surface of maghemite, under high surface coverage conditions (approximately 0.6 to 1.0 monolayer), with distinctly different sorption complexes for As(III) and As(V). For As(V), the EXAFS-derived As-Fe distance (approximately 3.35 +/- 0.03 A) indicates the predominance of single binuclear bidentate double-corner complexes (2C). For As(III), the distribution of the As-Fe distance suggests a coexistence of various types of surface complexes characterized by As-Fe distances of approximately 2.90 (+/-0.03) A and approximately 3.45 (+/-0.03) A. This distribution can be interpreted as being due to a dominant contribution from bidentate binuclear double-corner complexes (2C), with additional contributions from bidentate mononuclear edge-sharing (2E) complexes and monodentate mononuclear corner-sharing complexes (1V). The present results yield useful constraints on As(V) and As(III) adsorption on high surface-area powdered maghemite, which may help in modeling the behavior of arsenic at the maghemite-water interface.  相似文献   

19.
20.
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [P(CO2) = 10(-3.5) atm and approximately 0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L(-1), [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L(-1), [As(V)]0 = 0.5 mM and I = 0.01 M NaCI], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (P(CO2) = 10(-3.5) atm) than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear ( 2.8 A) and bidentate binuclear (approximately equal to 3.3 A) bonding at pH 4.5-8 and loading levels of 0.46-3.10 microM m(-2). Using the results of the pseudo-equilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the P(CO2) = 10(-3.5) atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号