首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
龙滩大坝碾压混凝土温度控制的难点及措施   总被引:4,自引:0,他引:4  
用有限元法分析龙滩大坝碾压混凝土在自然和温控条件下的温度场,用实用法分析碾压混凝土大坝在埋设冷却水管和不埋设冷却水管情况下,典型季节的温度情况,得出高温季节和次高温季节混凝土的温度控制难点,在此基础上提出温度控制方法和温控中应注意的问题。  相似文献   

2.
针对沙沱水电站坝址区水文气象条件、工程施工特点以及大坝碾压混凝土温度控制和防裂标准,介绍了高温和低温季节在碾压混凝土施工过程中采取的具体温控防裂措施。通过监测资料的统计分析,对各项温度控制措施的成效进行评价,实践表明大坝碾压混凝土温控工作基本取得了预期成效,施工至今大坝碾压混凝土未发现危害性的温度裂缝。  相似文献   

3.
景洪水电站碾压混凝土温控防裂措施及组织管理   总被引:2,自引:0,他引:2       下载免费PDF全文
针对景洪水电站水文气象条件、施工特点,以及上下游围堰和右冲坝段碾压混凝土温度控制标准,介绍景洪水电站纵向围堰高温季节碾压混凝土施工过程中采取的具体温控措施,以及业主在温控组织管理工作中采取的措施。对各项温控措施成效的统计分析表明,景洪水电站温控工作基本取得了预期成效,纵向围堰碾压混凝土至今未发现危害性的温度裂缝。  相似文献   

4.
吴勇  陈立君 《四川水力发电》2005,24(6):51-53,58
广西龙滩水电站是目前世界上在建的高度最高、碾压混凝土方量最大的全断面碾压混凝土重力坝。混凝土温度控制是高温季节碾压混凝土浇筑质量控制的重点和难点。本文通过在坝块内埋设冷却水管但暂不通水冷却的试验。为简化次高温度季节的温控措施提供技术依据.以利于下一步大规模碾压混凝土施工。  相似文献   

5.
加纳布维水电站大坝碾压混凝土施工温度控制   总被引:1,自引:0,他引:1  
碾压混凝土温控是碾压混凝土质量控制的关键环节.本文以加纳布维水电站混凝土施工为例,结合项目所处地的气候,进行了大坝碾压混凝土温度控制计算,并采取了合理的温控措施,使碾压混凝土入仓温度和温升控制在要求范围之内.  相似文献   

6.
龙滩碾压混凝土重力坝高温季节施工的温度应力问题   总被引:4,自引:1,他引:3  
结合龙滩大坝施工及气候特点,对高温、次高温季节施工的混凝土入仓温度、浇筑温度及各种措施的温控效果进行了研究,分析了大坝温度和应力的变化过程及规律,提出了高温季节碾压混凝土浇筑相应的温控措施,为工程提供参考。  相似文献   

7.
观音岩水电站工程地处中国西南地区,施工期间遇到高温季节长、昼夜温差大等温控技术难题.工程通过高温季节从原材料、出机口温度、运输过程、浇筑振捣等环节采取有效的温度控制措施,以及采取麻包装含泥砂保护等养护措施,解决了目前困扰抗冲耐磨混凝土施工的温控技术难题.观音岩工程施工至今,未发现任何温度裂缝,为抗冲耐磨混凝土温控施工积累了经验.文中重点介绍了抗冲耐磨混凝土温控措施和高温差季节保护措施.  相似文献   

8.
那比水电站大坝为碾压}昆凝土重力坝,最大坝高68.5m,大坝混凝土总量为28.9万m^3,其中碾压砼22.7万m^3。大坝从2010年4月底开始第一仓碾压砼施工,高温季节碾压砼施工采用自然温度入仓,温控主要采用预埋水管通河水冷却措施,2011年3月大坝碾压混凝土已经浇筑到设计高程,目前大坝已经过两个冬季的温度变化考验,碾压砼大坝未发现温度裂缝,满足设计温控要求。介绍了那比水电站碾压砼重力坝高温季节施工温控技术。  相似文献   

9.
某碾压混凝土重力坝施工温控措施研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在碾压混凝土坝施工和运行期间防止裂缝的产生是需要考虑和控制的重要问题,对具体温控措施进行研究可为以后提供重要的技术指导。以某碾压混凝土重力坝工程为例,利用大型有限元软件ANSYS进行建模,采用三维有限元浮动网格法模拟碾压混凝土坝的施工过程,根据工程施工进度和碾压混凝土的热力学参数,针对浇筑温度、通水冷却措施,初拟了3个温控方案,对各个方案的温度场和应力场进行计算分析。结果表明:高温季节进行混凝土浇筑对坝体温度和应力影响较大,极容易造成裂缝;通过控制浇筑温度和通水冷却措施,坝体最高温度得到了有效的降低,最大应力基本满足碾压混凝土坝容许应力要求。此研究成果可为类似工程的温控设计提供参考。  相似文献   

10.
河口村水库进水塔底板混凝土温控仿真分析   总被引:2,自引:2,他引:0  
河口村水库进水塔底板混凝土处于基础强约束区,温控标准严格。如何采取经济合理的温控措施降低温度裂缝风险及保证结构安全,成为整个进水塔架温控中的难点与关键点。利用ANSYS三维建模对进水塔架底板混凝土结构进行温度控制仿真分析,计算底板混凝土在高温季节与低温季节的温度场与应力场,并进行对比分析。结果表明,高温季节下浇筑底板混凝土需要采取的温控措施比低温季节施工要严格得多,且温控成本大,出现温度裂缝风险较高,故建议底板混凝土安排在低温季节施工。  相似文献   

11.
金安桥水电站大坝碾压混凝土温度控制初步分析   总被引:1,自引:0,他引:1  
金安桥水电站位于金沙江中游河段,大坝碾压混凝土量约为264.8万m3,具有工程规模大、工期紧、施工要求高、需在高温多雨季节连续施工等特点.碾压混凝土采用的温度控制措施主要有:优化混凝土配合比、降低入仓温度(预冷骨料、加冷水加冰拌和、运输过程保温)、仓面喷雾形成小气候、及时摊铺碾压(以斜层碾压为主)、仓面保温、通水冷却、加强温度控制管理等.历经2007年高温季节和冬季,大坝外观及浇筑各仓号均无裂缝.  相似文献   

12.
周波 《陕西水利》2010,(2):99-100
某碾压混凝土重力坝工程每座楼配置容积275m3的中转料仓4个,总容量1100m3,满足拌和楼大干3h的生产用料。为了保证混凝土浇筑出机口温度,混凝土制冷系统配置了制冷车间,制冷采取一、二次风冷及加冷水拌和方式,将高温季节出机口温度控制在12℃,温控效果较好。  相似文献   

13.
由于象鼻岭水电站地处暖温带高原季风气候区,该区域受季风、地形、低纬的影响形成复杂多变的气候特征,在施工过程中大坝碾压混凝土温控问题十分突出,成为质量和进度的控制关键。针对象鼻岭水电站水文气象条件、工程施工特点及大坝碾压混凝土温度控制标准,为防止建筑物有害裂缝发生,对碾压混凝土浇筑的温度控制施工技术进行了系统的研究,突破了传统的碾压混凝土温控理念,大胆采用优化混凝土配合比,降低入仓温度,通水冷却,视频监控等新工艺、新技术进行碾压混凝土温度控制,取得良好的温控效果,使碾压混凝土的施工质量得到了更可靠的保证。  相似文献   

14.
高温季节对大体积混凝土进行浇筑,其温度控制一直以来都是施工中的重点及难点,某工程通过制定科学合理的温控措施来实现对混凝土内部温度控制,保证工程的施工质量。在后期对温度相关数据进行采集和分析,以此证明了温控措施的合理性。  相似文献   

15.
三峡大坝混凝土浇筑块尺寸大,基础约束区设计允许最高温度较低,温控要求严,左岸非溢流12~18号坝段及左厂坝1~5号坝段面临1998年高温季节浇筑基础约束区混凝土的问题。研究解决高温季节浇筑基础约束区混凝土的温控措施,对保证混凝土施工质量非常重要。讨论混凝土的运输及浇筑过程中温度回升、高温季节浇筑混凝土的温度控制等。  相似文献   

16.
为解决高温多雨地区碾压混凝土温控防裂问题,以某高碾压混凝土重力坝为例,采用三维有限元温度及温度应力仿真,考虑高温多雨条件,对碾压混凝土的施工期温度场及应力场进行了分析,提出了高温多雨地区碾压混凝土施工的温控防裂措施,为确保高温多雨地区碾压混凝土坝全年连续快速施工提供了质量保障。  相似文献   

17.
混凝土施工期温度控制,是混凝土拱坝防裂的关键技术问题。石门坎电站拱坝高温季节持续时间长,低温季节昼夜温差大,气温骤降频繁,混凝土温控工作的难度较大,在施工期间针对这种特定情况,采取了一系列相应的温控防裂措施,有效地预防了坝体裂缝。  相似文献   

18.
由于进度需要,乐昌峡水利枢纽拦河坝碾压混凝土重力坝在高温时段需不停仓施工。为在此时段内控制混凝土温度裂缝,必须对大坝混凝土施工采取有效的温度控制措施,才能保障高温时段内大坝的混凝土质量。在施工期间,采取控制混凝土原材料温度、混凝土内部预埋冷却水管、加冰水拌和混凝土、仓面喷雾等措施控制混凝土的施工温度,取得了良好的温控效果。  相似文献   

19.
碾压混凝土坝高温季节连续施工的温控防裂研究   总被引:2,自引:0,他引:2  
蒋胜祥  朱岳明 《红水河》2007,26(2):53-56,60
碾压混凝土坝(RCCD)以温控措施相对简单和快速连续施工为其显著特点,但大量的工程实践表明,RCCD上时有温度裂缝出现,成为制约RCCD进一步发展的瓶颈问题之一.作者对某碾压混凝土坝在高温季节连续施工做了仿真计算,结果表明,若采用自然浇筑温度,在坝内埋设冷却水管,早期坝面进行保温的温控措施,能够将温度应力控制在允许应力范围内.表明这种温控措施具有一定的工程应用前景.  相似文献   

20.
乐昌峡坝址位于中亚热带山地气候区,高温期持续时间长,温度控制是碾压混凝土连续施工过程中须考虑的重要问题,与混凝土裂缝控制和耐久性密切相关。该文从原材料的优选、混凝土拌和、浇筑及养护等方面,介绍乐昌峡大坝碾压混凝土施工的温控技术措施,温控效果分析表明温控措施合理有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号