共查询到18条相似文献,搜索用时 93 毫秒
1.
基于蚁群算法的文本分类和聚类 总被引:1,自引:1,他引:1
为了研究并提高文本的分类和聚类算法的性能,笔者根据蚁群算法在TSP问题中的应用方法,将其改进引用到文本的分聚类中。在文本聚类中,改变蚂蚁的信息素释放机制,道路节点的聚合方式,最终将相似文本进行聚合。在文本的分类中,将所需要的分类信息装入蚂蚁,蚂蚁根据系统外部所希望的方式将文本分类。实验结果证明,这种新的算法可以使文本分类和聚类的准确度提高,蚁群算法在文本分类聚类中的应用是可行的。 相似文献
2.
吕岩 《微电子学与计算机》2012,29(3):31-34
提出了一种改进蚁群文本聚类算法.改进蚁群文本聚类算法利用信息素对蚂蚁随机移动进行控制,使蚂蚁朝着文本向量相对集中的区域移动,缩短蚂蚁寻找文本向量簇的时间,提高聚类效率.采用复旦大学中文文本分类语料库进行仿真实验,实验结果表明,改进蚁群文本聚类算法不仅加快了文本聚类算法的收敛速度,而且提高文本聚类结果的精度. 相似文献
3.
4.
提出了一种改进的蚁群聚类分析算法,通过改进LF算法中群体相似度函数,加入参数的自适应调整策略,利用短期记忆和网格信息素的局部分布控制蚂蚁的随机移动,并结合蚂蚁速度动态变化、半径递增、强制放下等特性。采用测试数据和不同的算法进行了对比实验分析,仿真实验结果表明,该算法显示出了较高的稳定性和准确率。 相似文献
5.
蚁群算法是优化领域中一种新兴的生物进化算法,与传统的算法相比,其具有并行、正反馈和启发式搜索等特点.在此,运用蚁群聚类算法对客户关系管理中的客户分类问题进行分析.结果表明,通过此算法对企业的客户消费数据进行分类,以此来获取不同类型客户的需求,对支持企业决策方面有着极为重要的理论参考价值和实际应用意义. 相似文献
6.
7.
针对数据稀疏性问题,提出基于蚁群聚类的项目评分预测方法.在对Web日志分析基础上将用户聚类,针对目标用户的未评分项目,找到目标用户的若干最近邻类簇,利用类簇内其他用户对目标项目的评分预测未评分项目的评分,从而达到降低数据稀疏性目的.最后,结合协同过滤思想设计了相应的推荐算法,并用从自主开发的旅游电子商务网站上收集的数据进行试验仿真.实验结果表明,与其它缓解数据稀疏性的方法相比,文中的方法显著提高了推荐精度. 相似文献
8.
本文介于k—prototypes和蚁群聚类算法的优,缺点,将两种算法进行改进后,交替使用,相互弥补.扬长避短,形成一种全新的算法,既缩短了聚类时间也能形成高效的聚类结果。 相似文献
9.
10.
11.
基于蚁群算法的模糊C均值聚类的改进研究 总被引:1,自引:0,他引:1
在图像分割的研究中,模糊C均值(FCM)聚类算法较之前的硬聚类有了很大的改进,是一种基于函数最优方法的聚类算法,然而传统的FCM算法的聚类中心及个数难以确定,搜索过程易陷入局部最优。因此,提出一种基于蚁群算法的改进的FCM聚类算法。该算法利用了蚁群算法全局优化特征以及较强鲁棒性的特点,将通过蚁群算法得到的聚类中心及个数应用到传统FCM算法中,弥补了传统FCM聚类算法的不足。该算法对图像进行分块处理,并引入多尺度梯度,提高了图像分割的准确性,最后通过实验验证了该算法的有效性及实用性。 相似文献
12.
13.
文中将频率敏感算法引入到基本的蚁群算法中,提出了一种改进的蚁群聚类码书设计算法。在提出的码书设计算法中采用LBG码书优化准则,引入了频率敏感算法。仿真实验表明,提出的算法避免了停滞现象发生,有效地提高了其全局搜索能力。 相似文献
14.
蚁群算法收敛性验证系统的研究与实现 总被引:1,自引:0,他引:1
蚁群算法是一种新型的仿生优化算法,具有较强的鲁棒性、优良的分布式机制、并行性以及正反馈等特点。目前蚁群算法已涉及众多应用领域,在解决复杂优化问题上具有较多优越性。文中深入研究了蚁群算法的性能及机制,分析了参数对算法性能的影响。在理论研究的基础上,实现了蚁群算法的仿真实验;通过Java绘图界面形象完整地展现出整个收敛的过程,验证了蚁群算法的收敛性;通过对参数的调试、组合,得到了最佳的收敛效果。该系统的实现对今后收敛性的研究打下了基础。 相似文献
15.
16.
本文提出样本空间经过K-均值聚类算法聚类加工处理后,算法通过动态地调整选择路径概率,优化TSP求解过程中解的分布均衡性,可以在加速收敛和防止早熟、停滞现象之间取得很好的平衡。这种新的算法提供了在样本空间预处理情况下,动态自适应地解决TSP问题最优解的新方法。比起普通蚁群算法,此算法对大规模数据的最优解的求解更有显著效果。 相似文献
17.
针对新体制、新技术雷达下的雷达侦察接收机,提出一种新的蚁群聚类分析算法,该方法易编程实现,不需要雷达信号的先验知识,适用于处理未知信号的雷达。仿真实验证明分选结果较理想,为雷达信号分选提供了新的思路。 相似文献
18.
提出双向蚁群算法并应用于静态环境下的机器人全局路径规划问题.对栅格法环境建模进行改进,将传统的栅格法改进为膨胀栅格法;使用双向蚁群算法在出发点和目标点设置带有不同标记的两族蚂蚁相向爬行完成搜索,启发信息主要通过目标点、出发点和蚂蚁的当前位置二维坐标值计算得出;信息素存储采用方向信息素矩阵.仿真实验证明:即使在障碍物非常复杂的地理环境,用本算法也能迅速规划出最优路径. 相似文献