首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We have developed and tested a submillimeter waveguide SIS mixer with NbN-MgO-NbN quasiparticle tunnel junctions. The two junction array is integrated in a full NbN printed circuit. The NbN film critical temperature is 15 K and the junction gap voltage is 5 mV. The size of the junctions is 1.4 × 1.4 µm and Josephson critical current density is about 1.5 KA/cm2 resulting in junction RNωC product about 40. The inductive tuning circuit in NbN is integrated with each junction in two junction array. A single non contacting backshort was tuned at each frequency in the mixer block. At 306 GHz the minimum DSB receiver noise temperature is as low as 230 K. The sources of the receiver noise and of the limits of the NbN SIS submillimeter mixer improvement are discussed.  相似文献   

2.
A heterodyne receiver using an SIS waveguide mixer with two mechanical tuners has been characterized from 480 GHz to 650 GHz. The mixer uses either a single 0.5 × 0.5 µm2 Nb/AlOx/Nb SIS tunnel junction or a series array of two 1 µm2 Nb tunnel junctions. These junctions have a high current density, in the range 8 – 13 kA/cm2. Superconductive RF circuits are employed to tune the junction capacitance. DSB receiver noise temperatures as low as 200 ± 17 K at 540 GHz, 271 K ± 22 K at 572 GHz and 362 ± 33 K at 626 GHz have been obtained with the single SIS junctions. The series arrays gave DSB receiver noise temperatures as low as 328 ± 26 K at 490 GHz and 336 ± 25 K at 545 GHz. A comparison of the performances of series arrays and single junctions is presented. In addition, negative differential resistance has been observed in the DC I–V curve near 490, 545 and 570 GHz. Correlations between the frequencies for minimum noise temperature, negative differential resistance, and tuning circuit resonances are found. A detailed model to calculate the properties of the tuning circuits is discussed, and the junction capacitance as well as the London penetration depth of niobium are determined by fitting the model to the measured circuit resonances.  相似文献   

3.
A superconducting low-noise receiver has been developed for atmospheric observations in the 650-GHz band. A waveguide-type tunerless mixer mount was designed based on one for the 200-GHz band. Two niobium SIS (superconductor-insulator-superconductor) junctions were connected by a tuning inductance to cancel the junction capacitance. We designed the ωRnCj product to be 8 and the current density to be 5.5 kA/cm2. The measured receiver noise temperature in DSB was 126-259 K in the frequency range of 618-660 GHz at an IF of 5.2 GHz, and that in the IF band (5-7 GHz) was 126-167 K at 621 GHz. Direct detection measurements using a Fourier transform spectrometer (FTS) showed the frequency response of the SIS mixer to be in the range of about 500-700 GHz. The fractional bandwidth was about 14%. The SIS receiver will be installed in a balloon-borne limb-emission sounder that will be launched from Sanriku Balloon Center in Japan.  相似文献   

4.
We present a SIS mixer developed for 200 – 250 GHz band receivers of Plateau de Bure Interferometer. We demonstrate the minimum DSB receiver noise of 20 K at 220 GHz. The average receiver noise of 25 K is possible in 200 – 250 GHz range. The receiver conversion gain and output noise instability of 10?4 on the time scale of 1 minute is comparable with the Shottky receivers performance. The minimum measured SIS mixer noise of about 10 K is close to the quantum limit. The waveguide SIS mixer with a single backshort has two junction array with inductively tuned junctions. The Nb/Al Oxide/Nb SIS junctions are 2.24 µm2 each with the Josephson critical current density of 3.2 KA/cm2. The thermal properties of the SIS mixer are studied. The mixer band of the low noise operation is in a good agreement with the design requirements.  相似文献   

5.
A novel broadband tuning circuit composed of two low-current-density half-wave NbN/MgO/NbN tunnel junctions connected by a half-wave NbN/MgO/NbN microstrip line has been successfully tested in a quasi-optical mixer at frequencies above 700 GHz. The circuit had a designed center frequency of 870 GHz, was integrated in a center-fed twin-slot antenna, and was fed via a quarter-wave impedance transformer. Heterodyne measurments showed double-side-band receiver noise temperatures equivalent to 6-9 quanta from 675 to 810 GHz for a mixer with a current density of 6.7 kA/cm2. The RF bandwidth was broader than that of a conventional mixer using a full-wave junction with the same current density.  相似文献   

6.
We have developed broadband SIS heterodyne receivers for the frequency ranges from 440 to 500 GHz and 630 to 690 GHz. The mixerblocks contain a punched waveguide cavity which forms a fixed backshort. The substrate channel is sawed across the waveguide. The horn antenna is flanged to the mixerblock. The blocks are easy and quickly to manufacture even for the small dimensions needed in the submm wavelength range. We use Nb-Al2O3-Nb junctions with areas of 0.8 µm2 and integrated three step niobium tuning structures. With this design we achieve instantaneous double sideband receiver noise temperatures around 120 K over the frequency range from 660 to 690 GHz and around 80 K from 440 to 500 GHz. The mixer performance agrees well with the design calculations for the tuning structures.  相似文献   

7.
We report results on two full height waveguide receivers that cover the 200–290 GHz and 380–510 GHz atmospheric windows. The receivers are part of the facility instrumentation at the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. We have measured receiver noise temperatures in the range of 20K–35K DSB in the 200–290 GHz band, and 65–90K DSB in the 390–510 GHz atmospheric band. In both instances low mixer noise temperatures and very high quantum efficiency have been achieved. Conversion gain (3 dB) is possible with the 230 GHz receiver, however lowest noise and most stable operation is achieved with unity conversion gain. A 40% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner full height waveguide mixer block. The tuned Nb/AlO x /Nb tunnel junctions incorporate an “end-loaded” tuning stub with two quarter-wave transformer sections to tune out the large junction capacitance. Both 230 and 492 GHz SIS junctions are 0.49µm2 in size and have current densities of 8 and 10 kA/cm2 respectively. Fourier Transform Spectrometer (FTS) measurements of the 230 and 492 GHz tuned junctions show good agreement with the measured heterodyne waveguide response.  相似文献   

8.
A three-port approximation of the quantum mixer theory is employed to perform mixer gain calculations at 230 GHz for SIS junctions with integrated tuning structures. In addition, the embedding impedance range of a waveguide mixer mount has been obtained from model measurements and has been included in the gain calculations. The results show that even moderately small junctions can perform well in a waveguide environment when an integrated tuning structure is used. A three-element tuning circuit is presented that would allow broad band operation with a fixed embedding impedance which is important for applications using a planar antenna structure.  相似文献   

9.
SIS mixers in which superconducting tuning elements are integrated with the tunnel junctions have resulted in very low noise heterodyne receivers in the range 68–260 GHz. Above ~120 GHz the need for extremely small reduced-height waveguides is avoided by mounting the SIS junctions in a suspended-stripline circuit coupled to a full-height waveguide by a broadband probe. The special characteristics of coplanar transmission line permit the design of SIS mixers with low parasitic reactances. Such a mixer operates over the full WR-10 band (75–110 GHz) without mechanical tuners.  相似文献   

10.
Planar lithographed quasioptical mixers can profit from the use of integrated tuning elements to improve the coupling between the antenna and the SIS mixer junctions. We have used a Fourier transform spectrometer with an Hg-arc lamp source as an RF sweeper to measure the frequency response of such integrated tuning elements. The SIS junction connected to the tuning element served as the direct detector for the spectrometer. This relatively quick, easy experiment can give enough information over a broad range of millimeter and submillimeter wavelengths to test both design concepts and success in fabrication. One type of tuning element, an inductive wire connected in parallel with a series array of 5 SIS junctions across the terminals of a bow-tie antenna, shows a resonant response peak at 100 GHz with a 30% bandwidth. This result is in excellent agreement with theoretical calculations based on a simple L-C circuit. It also agrees very well with the RF frequency dependence of the mixer gain measured using the same structure. The other type of tuning element, an open-circuited stub connected in parallel with a single SIS junction across the terminals of a bow-tie antenna, exhibits multiple resonances at 110, 220, and 336 GHz, with bandwidths of 9–15 GHz. This result is in good agreement with theoretical calculations based on an open-circuited stub with small loss and small dispersion. The position and the bandwidth of the resonance at 110 GHz also agrees with the RF frequency dependence of the mixer gain measured using similar structures.  相似文献   

11.
A Vertically Integrated Array (stacked array) of single windowSIS junctions (VIA SIS), based on a stacked five layer structure of Nb-AlOx-Nb-AlOx-Nb, has been fabricated and tested in a quasi optical mixer configuration at 106 GHz. This particular VIA SIS design has two stacked junctions fabricated by standard tri-layer process employing photolithography, reactive ion and wet etching processes. A simple expression for calculating the specific capacitance of single and arrayed SIS junctions is suggested. Due to the absence of interconnection leads between the individual junctions and reduced overall capacitance, compared to a single SIS junction, has the VIA SIS good future prospects for use in submillimeter wave SIS mixers The VIA SIS may be regarded as a lumped rather than a distributed structure at least up to the gap frequency at 730 GHz for Nb. DC-IV measurements show high quality of the Individual SIS junctions and good reproducibility of the array parameters over the substrate area. The first VIA SIS mixer experiments yielded a receiver noise temperature of 95 K (DSB) at a LO frequency of 106 GHz.  相似文献   

12.
In this paper, we describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor-insulator-superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180° hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180° IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent giving uncorrected receiver noise temperature of better than 115 K (double sideband) at 528 GHz for both the polarizations  相似文献   

13.
We present the design and experimental data of an SIS waveguide mixer for frequencies from 760 to 820 GHz. We use a Nb-Al2O3-Nb junction with an integrated niobium tuning structure. The waveguide mixer block contains no adjustable tuning elements. Design criteria for lossy tuning structures, differing from the impedance matching techniques used in the lossless case, are described. We separate the influence of the intrinsic mixing properties of an SIS junction from the effects of the power coupling to the signal source on the overall noise. This allows us to derive the contributions of the optics, the losses in the stripline and the noise generated in the junction to the total receiver noise from the measurements. We achieve double sideband receiver noise temperatures of around 850 K at frequencies from 780 to 820 Ghz and 4.2 K operating temperature of the mixer. Cooling the mixer to 2.5 K results in an improvement of the receiver noise temperature by 150 to 200 K. The bandwidth is presently limited by the local oscillator. The mixer was successfully used in a dual channel receiver (440 to 490 GHz and 780 to 820 GHz) at the Submillimeter Telescope Observatory (SMTO) on Mount Graham, Arizona.  相似文献   

14.
Three Nb/AlOx/Nb SIS detectors, designed to operate in the 400-550, 550-700, and 600-750 GHz bands, have been studied in direct detection mode using a Fourier-transform spectrometer. All three detectors were of quasi-optical type and had on-chip-integrated-fixed tuned SIS junctions. The tuning ranges of the detectors were selected to cover the interesting region around the superconducting gap frequency of Nb (about 700 GHz). Measurements show detector responses at frequencies above the gap frequency, i.e., up to ≈920 GHz, and that cooling the detectors to 3.1 K improved the direct detection responses about 15% below 700 GHz and about 50% for frequencies up to 800 GHz, compared to the responses at 4.2 K. The 500 GHz SIS detector was also studied in a 440-520 GHz heterodyne receiver set up. Good agreement between modeled tuning circuit characteristics, tuning range of the mixer and the direct detection response bandwidths were found. However, it is essential that the dispersion of the field penetration depth into the superconductor is included in the modeling of the tuning circuits when the detector is operated at frequencies above the superconducting gap  相似文献   

15.
Several SIS quasiparticle mixers have been designed and tested for the frequency range from 80 to 115 GHz. The sliding backshort is the only adjustable RF tuning element. The RF filter reactance is used as a fixed RF matching element. A mixer which uses a single 2×2 μm2 Pb-alloy junction in a quarter-height waveguide mount has a coupled conversion gain of GM(DSB)=2.6±0.5 dB with an associated noise temperature of TM(DSB)=16.4±1.8 K at the best DSB operation point. The receiver noise temperature TR(DSB) is 27.5±0.8 K for the mixer test apparatus. This mixer provides a SSB receiver noise temperature below 50 K over the frequency range from 91 to 96 GHz, the minimum being TR(SSB)=44±4 K. Another mixer with an array of five 5×5 μm2 junctions in series in a full-height wave-guide mount has much lower noise temperature TM(DSB)=6.6±1.6 K, but less gain GM(DSB)=?5.1±0.5 dB.  相似文献   

16.
In this work we present for the first time a low-noise submillimeter receiver with a mixer using Superconductor-Insulator-Normal metal-Superconductor (SINS) junctions. Junctions containing a normal metal layer may be free of the Josephson current and of the related perturbations of mixer operation specific for the standard SIS mixers. This SINS mixer quality is important for the application in the multibeam submillimeter receiver. The SINS mixer stability of operation and independence on the magnetic field have been confirmed in our experiment. Minimum SINS receiver noise in the 290 – 330 GHz band is about 135 K when the junction RNωC is about 30. Noise, conversion gain and thermal properties of the SINS mixer have been studied and compared with the SIS mixers. The limit of SINS mixer operation improvement is discussed at the end of the work.  相似文献   

17.
We have designed and fabricated a fixed tuned low noise 600-700 GHz SIS mixer. Twin junctions connected in parallel was employed in the mixer design. A short microstrip tuning structure was used to minimize the RF signal loss at frequency above the energy gap. A receiver noise temperature below 200 K (without any loss correction) in the frequency range of 630 to 660 GHz was recorded. The lowest noise temperature of the receiver was 181 K (without any loss correction) at 656 GHz.  相似文献   

18.
Millimeter-wave characterization of a heterodyne receiver using (2 μm2) Nb/Al-Ox/Nb Superconducting-Insulator-Superconducting (SIS) junctions arrays is reported. The fabrication of the Nb/Al-Ox/Nb SIS junction arrays as a heterodyne mixer is described. The leakage current of these junctions is below 2μA at 4.2K and unmeasurable at 2.5K. The receiver gave a noise temperature Double Side Band (DSB) between 63K and 187K over the frequency range 80 to 115 GHz at the first conversion peak. The results are comparable to those obtained with SIS receivers using well researched lead junctions. Contrary to the lead junctions, our mixer using all Nb junctions have proven remarkably stable with respect to thermal cycling, characteristics which are required for space applications. To our knowledge, this is the most reliable low noise receiver operating in this frequency range.  相似文献   

19.
We report recent results on a 565–690 GHz SIS heterodyne receiver employing a 0.36µm2 Nb/AlO x /Nb SIS tunnel junction with high quality circular non-contacting backshort and E-plane tuners in a full height waveguide mount. No resonant tuning structures have been incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, ≈ 680 GHz. Typical receiver noise temperatures from 565–690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15%, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii.  相似文献   

20.
We report recent results on a 20% reduced height 270–425 GHz SIS waveguide receiver employing a 0.49 µm2 Nb/AlO x /Nb tunnel junction. A 50% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner reduced height waveguide mixer block. The junction uses an “end-loaded” tuning stub with two quarter-wave transformer sections. We demonstrate that the receiver can be tuned to give 0–2 dB of conversion gain and 50–80% quantum efficiency over parts of it's operating range. The measured instantaneous bandwidth of the receiver is ≈ 25 GHz which ensures virtually perfect double sideband mixer response. Best noise temperatures are typically obtained with a mixer conversion loss of 0.5 to 1.5 dB giving uncorrected receiver and mixer noise temperatures of 50K and 42K respectively at 300 and 400 GHz. The measured double sideband receiver noise temperature is less than 100K from 270 GHz to 425 GHz with a best value of 48K at 376 GHz, within a factor of five of the quantum limit. The 270–425 GHz receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii. Preliminary tests of a similar junction design in a full height 230 GHz mixer block indicate large conversion gain and receiver noise temperatures below 50K DSB from 200–300 GHz. Best operation is again achieved with the mixer tuned for 0.5–1.5 dB conversion loss which at 258 GHz resulted in receiver and mixer noise temperature of 34K and 27K respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号