首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamic fracture of functionally graded materials (FGMs) is modeled using an explicit cohesive volumetric finite element scheme that incorporates spatially varying constitutive and failure properties. The cohesive element response is described by a rate-independent bilinear cohesive failure model between the cohesive traction acting along the cohesive zone and the associated crack opening displacement. A detailed convergence analysis is conducted to quantify the effect of the material gradient on the ability of the numerical scheme to capture elastodynamic wave propagation. To validate the numerical scheme, we simulate dynamic fracture experiments performed on model FGM compact tension specimens made of a polyester resin with varying amounts of plasticizer. The cohesive finite element scheme is then used in a parametric study of mode I dynamic failure of a Ti/TiB FGM, with special emphasis on the effect of the material gradient on the initiation, propagation and arrest of the crack.  相似文献   

2.
An extended element free Galerkin method (XEFGM) has been adopted for fracture analysis of functionally graded materials (FGMs). Orthotropic enrichments functions are used along with the sub-triangle technique for enhancing the Gauss quadrature accuracy near the crack, and the incompatible interaction integral method is employed to calculate the stress intensity factors. Numerical simulations have proved that XEFGM provides more accurate results by less number of nodes (DOFs) in comparison with the unenriched EFGM and other conventional methods for several FGM problems with different crack locations and loadings. The results have been compared with the reference results, showing the reliability, stability, and efficiency of present XEFGM.

Received 9 June 2014 Accepted 17 September 2014.  相似文献   


3.
Mixed-mode crack analysis in unidirectionally and bidirectionally functionally graded materials is performed by using a boundary integral equation method. To make the analysis tractable, the Young's modulus of the functionally graded materials is assumed to be exponentially dependent on spatial variables, while the Poisson's ratio is assumed to be constant. The corresponding boundary value problem is formulated as a set of hypersingular traction boundary integral equations, which are solved numerically by using a Galerkin method. The present method is especially suited for straight cracks in infinite FGMs. Numerical results for the elastostatic stress intensity factors are presented and discussed. Special attention of the analysis is devoted to investigate the effects of the material gradients and the crack orientation on the elastostatic stress intensity factors.  相似文献   

4.
This paper addresses finite element evaluation of the non-singular T-stress and mixed-mode stress intensity factors in functionally graded materials (FGMs) under steady-state thermal loads by means of interaction integral. Interaction integral provides an accurate and efficient numerical framework in evaluating these fracture parameters in FGMs under thermal as well as mechanical loads. We use a non-equilibrium formulation and the corresponding auxiliary (secondary) fields tailored for FGMs. Graded finite elements have been developed to account for the spatial gradation of thermomechanical properties. This paper presents various numerical examples in which the accuracy of the present method is verified.  相似文献   

5.
This work investigates elastic-plastic crack growth in ceramic/metal functionally graded materials (FGMs). The study employs a phenomenological, cohesive zone model proposed by the authors and simulates crack growth by the gradual degradation of cohesive surfaces ahead of the crack front. The cohesive zone model uses six material-dependent parameters (the cohesive energy densities and the peak cohesive tractions of the ceramic and metal phases, respectively, and two cohesive gradation parameters) to describe the constitutive response of the material in the cohesive zone. A volume fraction based, elastic-plastic model (extension of the original Tamura-Tomota-Ozawa model) describes the elastic-plastic response of the bulk background material. The numerical analyses are performed using WARP3D, a fracture mechanics research finite element code, which incorporates solid elements with graded elastic and plastic properties and interface-cohesive elements coupled with the functionally graded cohesive zone model. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive zone model and the computational scheme to analyze crack growth in a single-edge notch bend, SE(B), specimen made of a TiB/Ti FGM. Cohesive parameters are calibrated using the experimentally measured load versus average crack extension (across the thickness) responses of both Ti metal and TiB/Ti FGM SE(B) specimens. The numerical results show that with the calibrated cohesive gradation parameters for the TiB/Ti system, the load to cause crack extension in the FGM is much smaller than that for the metal. However, the crack initiation load for the TiB/Ti FGM with reduced cohesive gradation parameters (which may be achieved under different manufacturing conditions) could compare to that for the metal. Crack growth responses vary strongly with values of the exponent describing the volume fraction profile for the metal. The investigation also shows significant crack tunneling in the Ti metal SE(B) specimen. For the TiB/Ti FGM system, however, crack tunneling is pronounced only for a metal-rich specimen with relatively smaller cohesive gradation parameter for the metal.  相似文献   

6.
The problem of brittle crack propagation and fatigue crack growth in functionally graded materials (FGMs) is addressed. The proposed analytical approach can be used to estimate the variation of the stress-intensity factor as a function of the crack length in FGMs. Furthermore, according to the Paris’ law, the fatigue life and the crack-tip velocity of crack propagation can be predicted in the case of fatigue crack growth. A comparison with numerical results obtained according to the Finite Element method will show the effectiveness of the proposed approach. Detailed examples are provided in the case of three-point bending beam problems with either a FGM interlayer, or a FGM external coating. A comparison is presented between two types of grading in the elastic modulus: a continuous linear variation in the FGM layer and a discrete approximation with a multi-layered beam and a constant Young’s modulus in each layer.  相似文献   

7.
This paper is concerned with the thermal fracture problem of a functionally graded orthotropic strip, where the crack is situated parallel to the free edges. All the material properties are assumed to be dependent only on the coordinate y (perpendicular to the crack surfaces). By using Fourier transform, the thermoelastic problem is reduced to those that involve a system of singular integral equations. Numerical results are presented to show the effects of the crack position and the material distribution on the thermal stress intensity factors.  相似文献   

8.
TiC-Ni梯度功能材料的优化设计   总被引:9,自引:0,他引:9  
对TiC-Ni梯度功能材料在制备过程中的残余热应力进行了计算机有限元模拟,考察了梯度组成分布指数对热应力大小,最大热应力发生的位置以及纯陶瓷TiC侧热应力状态的影响,综合分析了热应力的大小和分布,得到了缓和制备热应力的梯度组成分布指数P=1.0的优化设计结果。  相似文献   

9.
A numerical method is proposed for analysing transient waves in plates of functionally graded material (FGM) excited by impact loads. The material properties of the FGM plate have a gradient in the thickness direction and are anisotropic in the plane of the plate. In the present method, the FGM plate is divided into layer elements in the thickness direction. For an accurate modelling of the variation of the material property of FGM plates, it is expressed by second‐order polynomials in the thickness direction within an element. This can further reduce the number of elements to obtain more accurate results effectively. The principle of virtual work is used to develop approximate dynamic equilibrium equations. The displacement response is determined by employing the Fourier transformation and the modal analysis. As examples, the displacement response of FGM plates excited by line, point and distributed loads is calculated. The computations have shown the efficiency of the present method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The interaction integral is a conservation integral that relies on two admissible mechanical states for evaluating mixed‐mode stress intensity factors (SIFs). The present paper extends this integral to functionally graded materials in which the material properties are determined by means of either continuum functions (e.g. exponentially graded materials) or micromechanics models (e.g. self‐consistent, Mori–Tanaka, or three‐phase model). In the latter case, there is no closed‐form expression for the material‐property variation, and thus several quantities, such as the explicit derivative of the strain energy density, need to be evaluated numerically (this leads to several implications in the numerical implementation). The SIFs are determined using conservation integrals involving known auxiliary solutions. The choice of such auxiliary fields and their implications on the solution procedure are discussed in detail. The computational implementation is done using the finite element method and thus the interaction energy contour integral is converted to an equivalent domain integral over a finite region surrounding the crack tip. Several examples are given which show that the proposed method is convenient, accurate, and computationally efficient. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This study presents a framework for the development of polygon elements based on the scaled boundary FEM. Underpinning this study is the development of generalized scaled boundary shape functions valid for any n‐sided polygon. These shape functions are continuous inside each polygon and across adjacent polygons. For uncracked polygons, the shape functions are linearly complete. For cracked polygons, the shape functions reproduce the square‐root singularity and the higher‐order terms in the Williams eigenfunction expansion. This allows the singular stress field in the vicinity of the crack tip to be represented accurately. Using these shape functions, a novel‐scaled boundary polygon formulation that captures the heterogeneous material response observed in functionally graded materials is developed. The stiffness matrix in each polygon is derived from the principle of virtual work using the scaled boundary shape functions. The material heterogeneity is approximated in each polygon by a polynomial surface in scaled boundary coordinates. The intrinsic properties of the scaled boundary shape functions enable accurate computation of stress intensity factors in cracked functionally graded materials directly from their definitions. The new formulation is validated, and its salient features are demonstrated, using five numerical benchmarks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
By using the effective shear modulus and mass density, the influence of functional gradient on dynamic energy release rate is discussed under the condition of constant velocity of crack propagation.  相似文献   

13.
A local approach model has been developed for structural assessment of functionally graded materials in which the yield strength and the fracture toughness vary spatially. While the yield strength of the material at any point is taken to be deterministic, the local cleavage toughness is statistically distributed following a two-parameter Weibull model. The model is intended to determine the crack extension direction and failure probabilities of cleavage failure for a stationary pre-crack in a functionally graded material. The effect of independent variation in yield strength and toughness is discussed as a precursor to validating the model using a temperature gradient problem in which the yield strength and toughness are coupled through the temperature. The model is shown to closely reproduce experimental observations from cleavage fracture tests on mild steel subject to a controlled temperature gradient normal to the crack.  相似文献   

14.
采用粉末冶金方法制备出NiCr/ZrO2功能梯度材料FGMs。通过2种断裂试件研究了材料梯度对混合型断裂行为的影响(FGM-A试件,裂纹位于试件的弹性模量较大一侧;FGM-B试件,裂纹位于试件的弹性模量较小一侧)。对2种断裂试件在非对称载荷下进行准静态断裂实验,并利用数字散斑相关方法测得Ⅰ、Ⅱ型应力强度因子。结果表明:FGM-A的裂纹的开裂角小于FGM-B的开裂角;FGM-A的弹性梯度对静态裂纹有保护作用;弹性模量的梯度变化和裂尖局部材料的断裂韧性会影响混合型裂纹的启裂。  相似文献   

15.
The temperature response in functionally gradient materials (FGM), subjected to pulseor stepwise heating at the front surface, is evaluated. Applicability of the approximate solution for the temperature response is investigated by comparing it with an exact analytical solution for the FGM in which thermophysical properties have certain profiles. When the FGM is composed of conventional solid materials, appropriateness of the approximate solution for the FGM is demonstrated as far as the temperature response near the rear surface is concerned. The approximate solution is also compared with the solution for the multilayered material. It is shown that an eight-layered material can be regarded as an FGM, as far as the temperature response at the rear surface is concerned, and that the approximate solution can predict the temperature response within 6% error. Because of its simplicity and fair degree of agreement, the approximate solution is anticipated to be used not only for qualitative but also for quantitative prediction of the temperature response near the rear surface of the FGM in engineering applications.  相似文献   

16.
This article provides a comprehensive investigation on the fracture behavior of cracked functionally graded piezoelectric materials (FGPMs). To account for the effect of dielectric medium inside the crack upon the fracture behavior of FGPMs, a dielectric crack model is used in this work, in which the electric boundary condition along crack surfaces is deformation-dependent and is nonlinear. The analytical formulations are developed using Fourier transform technique and solving the nonlinear singular equations using Chebyshev polynomials. A solution technique is developed to determine the desired deformation mode of the crack. Numerical simulations are given to show the effects of material gradient and the dielectric medium filling the crack upon the fracture behavior of FGPMs. The results obtained from this dielectric crack model clearly demonstrate how the transition between electrically impermeable and permeable crack models occurs with the change of crack opening displacement in response to the applied electromechanical loads. It is also observed that a critical state for the applied electromechanical loading exists for FGPMs that determines whether the impermeable (or permeable) crack model serves as the upper or lower bound for the dielectric crack model considering the effect of dielectric medium filling the crack.  相似文献   

17.
A new interaction integral formulation is developed for evaluating the elastic T-stress for mixed-mode crack problems with arbitrarily oriented straight or curved cracks in orthotropic nonhomogeneous materials. The development includes both the Lekhnitskii and Stroh formalisms. The former is physical and relatively simple, and the latter is mathematically elegant. The gradation of orthotropic material properties is integrated into the element stiffness matrix using a “generalized isoparametric formulation” and (special) graded elements. The specific types of material gradation considered include exponential and hyperbolic-tangent functions, but micromechanics models can also be considered within the scope of the present formulation. This paper investigates several fracture problems to validate the proposed method and also provides numerical solutions, which can be used as benchmark results (e.g. investigation of fracture specimens). The accuracy of results is verified by comparison with analytical solutions.  相似文献   

18.
Deflection and deviation of cracks commonly occurs because of asymmetry in crack‐tip stresses in both homogeneous materials and functionally graded materials (FGMs); yet the analysis of curved cracks has been limited to simple crack shapes, otherwise the analysis would involve extensive levels of computation. The present study investigates the approximation of curved cracks with simplified shapes. A simple analytical model justifying the use of crack‐shape approximations, developed in an earlier study on stationary curved cracks in homogeneous materials, is outlined. Then, the approach is applied to propagating cracks in both homogeneous and graded material structures. Results are presented from finite element (FE) simulations of crack propagation using exact and simplified crack shapes. The use of an approximated crack shape can provide basic estimates for crack propagation path and critical load. However, systematic divergence can occur between predictions for exact and approximated crack shapes, particularly in inhomogeneous material configurations, and so the development of solutions for non‐straight cracks in FGMs would be expedient.  相似文献   

19.
This paper is directed towards finite element computation of fracture parameters in functionally graded material (FGM) assemblages of arbitrary geometry with stationary cracks. Graded finite elements are developed where the elastic moduli are smooth functions of spatial co‐ordinates which are integrated into the element stiffness matrix. In particular, stress intensity factors for mode I and mixed‐mode two‐dimensional problems are evaluated and compared through three different approaches tailored for FGMs: path‐independent J*k‐integral, modified crack‐closure integral method, and displacement correlation technique. The accuracy of these methods is discussed based on comparison with available theoretical, experimental or numerical solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
A new computational method based on the equivalent domain integral (EDI) is developed for mode I fracture analysis of orthotropic functionally graded materials (FGMs) subjected to thermal stresses. By using the constitutive relations of plane orthotropic thermoelasticity, generalized definition of the J-integral is converted to an equivalent domain integral to calculate the thermal stress intensity factor. In the formulation of the EDI approach, all the required thermomechanical properties are assumed to have continuous spatial variations through the functionally graded medium. Developed methodology is integrated into a fracture mechanics research finite element code FRAC2D using graded finite elements that possess cubic interpolation. Steady-state and transient temperature distribution profiles in orthotropic FGMs are computed using the finite elements based heat transfer analysis software HEAT2D. EDI method is validated and domain independence is demonstrated by comparing the numerical results obtained using EDI to those calculated by an enriched finite element method and to those available in the literature. Single and periodic edge crack problems in orthotropic FGMs are examined in order to study the influences of principal thermal expansion coefficient and thermal conductivity components, relative crack length and crack periodicity on the thermal stress intensity factors. Numerical results show that among the three principal thermal expansion coefficient components, the in-plane component perpendicular to the crack axis has the most significant influence on the mode I stress intensity factor. Gradation profile of the thermal expansion coefficient parallel to the crack axis is shown to have no effect on the outcome of the fracture analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号