首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Prediction of the energy dissipation rate in ductile crack propagation   总被引:1,自引:0,他引:1  
In this paper, energy dissipation rate D vs. Δa curves in ductile fracture are predicted using a ‘conversion’ between loads, load‐point displacements and crack lengths predicted by NLEFM and those found in real ELPL propagation. The NLEFM/ELPL link was recently discovered for the DCB testpiece, and we believe it applies to other cracked geometries. The predictions for D agree with experimental results. The model permits a crack tip toughness Ra) which rises from Jc and saturates out when (if) steady state propagation is reached after a transient stage in which all tunnelling, crack tip necking and shear lip formation is established. JR is always greater than the crack tip Ra) and continues to rise even after Ra) levels off. The analysis is capable of predicting the usual D vs. Δa curves in the literature which have high initial values and fall monotonically to a plateau at large Δa. It also predicts that D curves for CCT testpieces should be higher than those for SENB/CT, as found in practice. The possibility that D curves at some intermediate Δa may dip to a minimum below the levelled‐off value at large Δa is predicted and confirmed by experiment. Recently reported D curves that have smaller initial D than the D‐values after extensive propagation can also be predicted. The testpiece geometry and crack tip Ra) conditions required to produce these different‐shaped D vs. Δa curves are established and confirmed by comparison with experiment. The energy dissipation rate D vs. Δa is not a transferable property as it depends on geometry. The material characteristic Ra) may be the ‘transferable property’ for scaling problems in ELPL fracture. How it can be deduced from D vs. Δa curves (and by implication, JR vs. Δa curves) is established.  相似文献   

2.
Load‐controlled three‐point bending fatigue tests were conducted on API X80 pipeline steel to investigate the effects of stress ratio and specimen orientation on the fatigue crack growth behaviour. Because of the high strength and toughness of X80 steel, crack growth rate was measured and plotted versus ΔJ with stress ratio. The fatigue crack length is longer in the transverse direction, whereas the fatigue crack growth rates are nearly the same in different orientations. Finally, a new fatigue crack growth model was proposed. The effective J‐integral range was modified by ΔJp in order to correlate crack closure effect due to large‐scale yield of crack tip. The model was proved to fit well for fatigue crack growth rate of API X80 at various stress ratios of R > 0.  相似文献   

3.
For ageing airframe structures, a critical challenge for next generation linear elastic fracture mechanics (LEFM) modelling is to predict the effect of corrosion damage on the remaining fatigue life and structural integrity of components. This effort aims to extend a previously developed LEFM modelling approach to field corroded specimens and variable amplitude loading. Iterations of LEFM modelling were performed with different initial flaw sizes and crack growth rate laws and compared to detailed experimental measurements of crack formation and small crack growth. Conservative LEFM‐based lifetime predictions of corroded components were achieved using a corrosion modified‐equivalent initial flaw size along with crack growth rates from a constant Kmax‐decreasing ΔK protocol. The source of the error in each of the LEFM iterations is critiqued to identify the bounds for engineering application.  相似文献   

4.
The fatigue cracks growth rate of a forged HSLA steel (AISI 4130) was investigated using thin single edge notch tensile specimen to simulate the crack development on a diesel train crankshafts. The effect of load ratio, R, was investigated at room temperature. Fatigue fracture surfaces were examined by scanning electron microscopy. An approach based on the crack tip opening displacement range (ΔCTOD) was proposed as fatigue crack propagation criterion. ΔCTOD measurements were carried out using 2D‐digital image correlation techniques. J‐integral values were estimated using ΔCTOD. Under test conditions investigated, it was found that the use of ΔCTOD as a fatigue crack growth driving force parameter is relevant and could describe the crack propagation behaviour, under different load ratio R.  相似文献   

5.
Two parameters describing the growth of fatigue cracks are compared. They are the cyclic J integral ΔJ and the strain intensity expressed as an equivalent stress intensity ΔKeq-. By referring to cyclic stress-strain data obtained from hysteresis loops in high strength ferritic steels at room temperature and austenitic and ferritic steels at elevated temperature it is shown that: (i) for short cracks the parameters are simply related and (ii) both parameters adequately link fatigue crack growth rates observed in the separate high strain fatigue (HSF) and linear elastic fracture mechanics (LEFM) regimes. Correction factors for thumbnail cracks and the conditions under which the relations need further modification are discussed.  相似文献   

6.
Fatigue growth of short cracks in Ti-17: Experiments and simulations   总被引:1,自引:0,他引:1  
The fatigue behaviour of through thickness short cracks was investigated in Ti-17. Experiments were performed on a symmetric four-point bend set-up. An initial through thickness crack was produced by cyclic compressive load on a sharp notch. The notch and part of the crack were removed leaving an approximately 50 μm short crack. The short crack was subjected to fatigue loading in tension. The experiments were conducted in load control with constant force amplitude and mean values. Fatigue growth of the short cracks was monitored with direct current potential drop measurements. Fatigue growth continued at constant R-ratio into the long crack regime. It was found that linear elastic fracture mechanics (LEFM) was applicable if closure-free long crack growth data from constant KImax test were used. Then, the standard Paris’ relation provided an upper bound for the growth rates of both short and long crack.The short crack experiments were numerically reproduced in two ways by finite element computations. The first analysis type comprised all three phases of the experimental procedure: precracking, notch removal and fatigue growth. The second analysis type only reproduced the growth of short cracks during fatigue loading in tension. In both cases the material model was elastic-plastic with combined isotropic and kinematic hardening. The agreement between crack tip opening displacement range, cyclic J-integral and cyclic plastic zone at the crack tip with ΔKI verified that LEFM could be extended to the present short cracks in Ti-17. Also, the crack size limits described in the literature for LEFM with regards to plastic zone size hold for the present short cracks and cyclic softening material.  相似文献   

7.
The paper presents the results of fatigue crack growth on low‐alloy 18G2A steel under proportional bending with torsion loading. Specimens with square sections and a stress concentration in the form of external one‐sided sharp notch were used. The tests were performed under the stress ratios R=?1, ?0.5 and 0. The test results were described by the ΔJ‐integral range and compared with the ΔK stress intensity factor range. It has been found that there is a good agreement between the test results and the model of crack growth rate, which includes the ΔJ‐integral range.  相似文献   

8.
A fatigue crack growth model under constant amplitude loading has been developed considering energy balance during growth of the crack. The plastic energy dissipated during growth of a crack within cyclic plastic zone and area below cyclic stress–strain curve was used in the energy balance. The near crack tip elastic–plastic stress and strain were calculated on the basis of Hutchinson, Rice and Rosengren (HRR) formulations. Fatigue crack growth rate in linear and near threshold region of da/dN versus ΔK curve can be determined on the basis of the proposed model in terms of low cycle fatigue (LCF) properties determined on smooth specimen. The predictions of the model have been compared with the experimental and theoretical results available in the literature using mechanical and fatigue properties. The model compares well in the threshold and intermediate region of the da/dN versus ΔK curve for wide range of material tested.  相似文献   

9.
ABSTRACT The fatigue crack growth behaviour of 0.47% carbon steel was studied under mode II and III loadings. Mode II fatigue crack growth tests were carried out using specially designed double cantilever (DC) type specimens in order to measure the mode II threshold stress intensity factor range, ΔKIIth. The relationship ΔKIIth > ΔKIth caused crack branching from mode II to I after a crack reached the mode II threshold. Torsion fatigue tests on circumferentially cracked specimens were carried out to study the mechanisms of both mode III crack growth and of the formation of the factory‐roof crack surface morphology. A change in microstructure occurred at a crack tip during crack growth in both mode II and mode III shear cracks. It is presumed that the crack growth mechanisms in mode II and in mode III are essentially the same. Detailed fractographic investigation showed that factory‐roofs were formed by crack branching into mode I. Crack branching started from small semi‐elliptical cracks nucleated by shear at the tip of the original circumferential crack.  相似文献   

10.
A (high strain) low‐cycle fatigue (LCF) life prediction model of ultrafine‐grained (UFG) metals has been proposed. The microstructure of a UFG metal is treated as a two‐phase ‘composite’ consisting of the ‘soft’ matrix (all the grain interiors) and the ‘hard’ reinforcement (all the grain boundaries). The dislocation strengthening of the grain interiors is considered as the major strengthening mechanism in the case of UFG metals. The proposed model is based upon the assumption that there is a fatigue‐damaged zone ahead of the crack tip within which the actual degradation of the UFG metal takes place. In high‐strain LCF conditions, the fatigue‐damaged zone is described as the region in which the local cyclic stress level approaches the ultimate tensile strength of the UFG metal, with the plastic strain localization caused by a dislocation sliding‐off process within it. The fatigue crack growth rate is directly correlated to the range of the crack‐tip opening displacement. The empirical Coffin–Manson and Basquin relationships are derived theoretically and compared with experimental fatigue data obtained on UFG copper (99.99%) at room temperature under both strain and stress control. Good agreement is found between the model and the experimental data. It is remarkable that, although the model is essentially formulated for high strains (LCF), it is also found to be applicable at low strains in the high‐cycle fatigue (HCF) regime.  相似文献   

11.
Residual stresses due to manufacturing processes, such as welding, change the load bearing capacity of cracked components. The effects of residual stresses on crack behaviour in single edge bending specimens were investigated using Finite element analyses. Three parameters (J, Q and R) were used to study the crack behaviour. The J‐integral predicts the size scale over which large stresses and strains exist, the constraint parameter Q describes the crack‐tip constraint as a result of geometry, loading mode and crack depth and the constraint parameter R is used to describe the constraint resulting from residual stresses. To carry out a systematic investigation on the effect of residual stresses on the J‐integral and crack‐tip constraints, models under different combinations of residual stresses and external loads with different crack depths were analysed. It has been shown that the crack‐tip constraint R increased by tensile residual stresses around the crack‐tip. On the other hand, the constraint parameter R decreased and tended to zero at high external load levels.  相似文献   

12.
In this paper we study the mechanical attributes of the fractal nature of fracture surfaces. The structure of stress and strain singularity at the tip of a fractal crack, which can be self-similar or self-affine, is studied. The three classical modes of fracture and the fourth mode of fracture are discussed for fractal cracks in two-dimensional and three- dimensional solid bodies. It is discovered that there are six modes of fracture in fractal fracture mechanics. The J-integral is shown to be path-dependent. It is explained that the proposed modified J-integrals in the literature that are argued to be path-independent are only locally path-independent and have no physical meaning. It is conjectured that a fractal J-integral should be the rate of potential energy release per unit of a fractal measure of crack growth. The powers of stress and strain singularities at the tip of a fractal crack in a strain-hardening material are calculated. It is shown that stresses and strains have weaker singularities at the tip of a fractal crack than they do at the tip of a smooth crack.  相似文献   

13.
During fracture toughness testing, the stable crack growth measurement is necessary for the construction of the R-curves of J vs Δa or CTOD vs Δa. One possible measurement technique uses the Double Clip Gauge Method, which is based on the assumption that the specimen is deformed like two rigid arms that rotate around an apparent centre of rotation located in front of the crack tip. This apparent centre moves as the crack grows in a stable way, and its position can be estimated through the measurement of two crack opening displacements located at different heights. As a consequence the crack growth can be calculated. In this paper the behaviour of the equations that govern the Double Clip Gauge Method are described, and the zones of greatest sensitivity for the location of the clip gauges are determined. A sensitivity analysis of the most influential intervening variables is also made.  相似文献   

14.
15.
Predictions of small crack growth under cyclic loading in aluminium alloy 7075 are performed using finite element analysis (FEA), and results are compared with published experimental data. A double‐slip crystal plasticity model is implemented within the analyses to enable the anisotropic nature of individual grains to be approximated. Small edge‐cracks in a single grain with a starting length of 6 μm are incrementally grown following a node‐release scheme. Crack‐tip opening displacements (CTOD) and crack opening stresses are calculated during the simulated crack growth, and da/dN against ΔK diagrams are computed. Interactions between the crack tip and a grain boundary are also considered. The computations are shown to accurately capture the magnitude and the variability normally observed in small crack fatigue data.  相似文献   

16.
When a crack is subjected to cyclic shear-mode loading, crack faces interference wedge the crack open and reduce the effective ΔKII. The methods proposed in the literature to prevent it or to derive the effective ΔKI and ΔKII are discussed. It is shown that when crack tip plasticity becomes important it tends to make displacements larger than those predicted by LEFM and to “hide” friction effects. Finite element simulations combining friction and plasticity can separate these two effects, but the analysis of force-sliding displacement loops derived from displacement field measurements based on image correlation is a more straightforward and efficient method.  相似文献   

17.
In this paper, the effects of T‐stress on steady, dynamic crack growth in an elastic–plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J2 flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T‐stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T‐stress for both ductile and cleavage mode of crack growth.  相似文献   

18.
Heavy components of ductile cast iron frequently exhibit metallurgical defects that behave like cracks under cyclic loading. Thus, in order to decide whether a given defect is permissible, it is important to establish the fatigue crack growth properties of the material. In this paper, results from a comprehensive study of ductile cast iron EN‐GJS‐400‐18‐LT have been reported. Growth rates of fatigue cracks ranging from a few tenths of a millimetre (‘short’ cracks) to several millimetres (‘long’ cracks) have been measured for load ratios R=?1, R= 0 and R= 0.5 using a highly sensitive potential‐drop technique. Short cracks were observed to grow faster than long cracks. The threshold stress intensity range, ΔKth, as a function of the load ratio was fitted to a simple crack closure model. Fatigue crack growth data were compared with data from other laboratories. Single plain fatigue tests at R=?1 and R= 0 were also carried out. Fracture toughness was measured at temperatures ranging from ?40 °C to room temperature.  相似文献   

19.
High temperature fatigue crack growth has been examined in the light of the new concepts developed by the authors. We observe that the high temperature crack growth behavior can be explained using the two intrinsic parameters ΔK and Kmax, without invoking crack closure concepts. The two-parameter requirement implies that two driving forces are required simultaneously to cause fatigue cracks to grow. This results in two thresholds that must be exceeded to initiate the growth. Of the two, the cyclic threshold part is related to the cyclic plasticity, while the static threshold is related to the breaking of the crack tip bonds. It is experimentally observed that the latter is relatively more sensitive to temperature, crack tip environment and slip mode. With increasing test temperature, the cycle-dependent damage process becomes more time-dependent, with the effect that crack growth is dominated by Kmax. Thus, in all such fracture processes, whether it is an overload fracture or subcritical crack growth involving stress corrosion, sustained load, creep, fatigue or combinations thereof, Kmax (or an equivalent non-linear parameter such as Jmax) remains as one essential driving force contributing to the final material separation. Under fatigue conditions, cyclic amplitude ΔK (or an equivalent non-linear parameter like ΔJ) becomes the second necessary driving force needed to induce the characteristic cyclic damage for crack growth. Cyclic damage then reduces the role of Kmax required for crack growth at the expense of ΔK.  相似文献   

20.
In this paper, results from the linear normalization (LN) technique of Reese and Schwalbe for deriving J‐crack resistance (JR) curves have been compared, related to J–Δa (J‐integral–ductile crack growth) data points, to those obtained from traditional elastic compliance technique. Research results regarding a nuclear grade steel exhibiting a wide range of elastic–plastic fracture resistance agree quite well for both techniques until a certain level of toughness of the material. Below this critical level, LN produces inconsistent results for the sub‐sized compact tension specimens (0.4T C[T]). The evidence suggests that the loss of applicability of the LN technique can be determined on the basis of the η plastic factor (ηpl) for the best linear correlation achieved for ΔPN–Δa (normalised load gradient–ductile crack growth) data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号