首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the precipitation, aggregation, and dissolution behaviors of TiN inclusions on the surface of liquid GCr15 bearing steel have been investigated by combining the observations of confocal laser scanning microscope (CLSM) and field emission scanning electron microscope (FE-SEM) with those obtained from energy dispersive spectrometer (EDS) and theoretical analysis. The kinetic results show that the initial concentration of Ti and N are 0.0078 and 0.0049, respectively, the precipitation temperature is between 1640 K and 1680 K (1367 °C and 1407 °C), and the local cooling rate is between 0.5 and 10 K/s; TiN inclusion can precipitate only when the solid fraction is higher than 0.847 and its precipitation radius is between 1 and 6 μm. The precipitation radius of a TiN inclusion in the GCr15 bearing steel sheet can be reduced by decreasing the N content and increasing the cooling strength. The aggregation and densification of multi-particle aggregated TiN inclusions are verified by CLSM observation and theoretical analysis. The inclusions are aggregated by the cavity bridge force (CBF), and the aggregated TiN is formed by solid-phase sintering. The results of force analysis show that CBF plays a dominant role in the aggregation process of the inclusions. The atomic ratio of Ti and V obtained by EDS is 18:1, which may melt TiN and form the liquid inclusion at 1688 K (1415 °C) observed by CLSM. The theoretical analysis is conducted for the dissolution of the TiN inclusions observed by CLSM, which shows that the dissolution of the TiN inclusions is related to the size of the inclusions; the larger the size, the greater the dissolution rate. The long-strip TiN inclusion may be formed by the Ostwald ripening of two TiN inclusions. The TiN inclusions smaller than 3 μm in the GCr15 bearing steel may be formed by the dissolved Ti and N generated by the dissolution of TiN.  相似文献   

2.
Calcium treatment of aluminum killed steel was observed in situ using high-temperature confocal scanning laser microscope (HT-CSLM). This technique along with a novel experimental design enables continuous observation of clustering behavior of inclusions before and after the calcium treatment. Results show that the increase in average inclusion size in non-calcium-treated condition was much faster compared to calcium-treated condition. Results also show that the magnitude of attractive capillary force between inclusion particles in non-treated condition was about 10?15 N for larger particles (10 µm) and 10?16 N for smaller particles (5 µm) and acting length of force was about 30 µm. In the case of calcium-treated condition, the magnitude and acting length of force was reduced to 10?16 N and 10 µm, respectively, for particles of all sizes. This change in attractive capillary attractive force is due to change in inclusion morphology from solid alumina disks to liquid lens particles during calcium treatment.  相似文献   

3.
Inclusion agglomeration is an important element in several industrial problems during steelmaking, such as nozzle clogging. In parallel work by the authors, a revised Kralchevsky-Paunov model has been established and the performance of this model has been validated against the experimental data from in-situ observations using confocal laser scanning microscopy. In this work, the revised model has been applied to quantitatively evaluate the attractive capillary force for the agglomeration of various inclusions at the interface between Ar and liquid iron/steel. A parametric study of the effects on the capillary force of the inclusion density, contact angle between the inclusion and liquid steel, and the surface tension of the liquid metal are quantitatively investigated. The results show that inclusion density and contact angle have a more marked effect on the capillary force than surface tension of liquid metal. Moreover, the inclusion agglomeration behavior in the liquid iron/steel matrix is discussed. The coagulation coefficient of various inclusions is calculated. Both the calculation results of the attractive capillary force of inclusions at the interface between Ar and liquid iron/steel and coagulation coefficient of inclusions in the liquid iron/steel matrix can offer a close agreement; moreover, the order of magnitude of inclusion agglomeration tendency is suggested. By using the coagulation coefficient, the inclusion collision volume and collision rate are calculated and the effects of inclusion composition, size, and number density are investigated. The evaluation results show that the tendency for affecting inclusion collision is inclusion number density > inclusion size > inclusion composition.  相似文献   

4.
Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2x Al2y Si1?x?y O z (0 < x < 1, 0 < y < x and z = 1 ? x ? y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.  相似文献   

5.
The dynamics of intragranular ferrite (IGF) formation in inclusion engineered steels with either Ti2O3 or TiN addition were investigated using in situ high temperature confocal laser scanning microscopy. Furthermore, the chemical composition of the inclusions and the final microstructure after continuous cooling transformation was investigated using electron probe microanalysis and electron backscatter diffraction, respectively. It was found that there is a significant effect of the chemical composition of the inclusions, the cooling rate, and the prior austenite grain size on the phase fractions and the starting temperatures of IGF and grain boundary ferrite (GBF). The fraction of IGF is larger in the steel with Ti2O3 addition compared to the steel with TiN addition after the same thermal cycle has been imposed. The reason for this difference is the higher potency of the TiO x phase as nucleation sites for IGF formation compared to the TiN phase, which was supported by calculations using classical nucleation theory. The IGF fraction increases with increasing prior austenite grain size, while the fraction of IGF in both steels was the highest for the intermediate cooling rate of 70 °C/min, since competing phase transformations were avoided, the structure of the IGF was though refined with increasing cooling rate. Finally, regarding the starting temperatures of IGF and GBF, they decrease with increasing cooling rate and the starting temperature of GBF decreases with increasing grain size, while the starting temperature of IGF remains constant irrespective of grain size.  相似文献   

6.
Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.  相似文献   

7.
An innovative approach of super gravity was proposed to separate fine Al2O3 inclusions from liquid steel in this study. To investigate the removal behaviors of inclusions, the effects of different gravity coefficients and time on separating the inclusions were studied. The results show that a large amount of Al2O3 inclusions gathered at the top of the sample obtained by super gravity, whereas there were almost no inclusions appearing at the bottom. The volume fraction and number density of inclusions presented a gradient distribution along the direction of the super gravity, which became steeper with increasing gravity coefficient and separating time. As a result of the collision between inclusions, a large amount of inclusions aggregated and grew during the moving process, which further decreased the removal time. The experimental required removal time of inclusions is close to the theoretical values calculated by Stokes law under gravity coefficient G ≤ 80, t ≤ 15 minutes, and the small deviation may be because the inclusion particles are not truly spherical. Under the condition of gravity coefficient G = 80, t = 15 minutes, the total oxygen content at the bottom of the sample (position of 5 cm) is only 8.4 ppm, and the removal rate is up to 95.6 pct compared with that under normal gravity.  相似文献   

8.
The nucleation and growth behaviors of ferrite laths in the heat-affected zone (HAZ) of EH36-Mg shipbuilding steel with different heat inputs were observed in situ by high-temperature confocal scanning laser microscope (CSLM). It was found that ferrite laths prefer to nucleate on the surface of inclusions instead of grain boundaries under the heat input of 120 kJ/cm, while FSPs are easier to form in 210 kJ/cm due to a significantly reduced cooling rate.  相似文献   

9.
The behavior and formation mechanisms of inclusions in Ti-stabilized, 17Cr Austenitic Stainless Steel produced by the ingot casting route were investigated through systematic sampling of liquid steel and rolled products. Analysis methods included total oxygen and nitrogen contents, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicate that the composition of inclusions was strongly dependent on the types of added alloying agents. During the AOD refining process, after the addition of ferrosilicon alloy and electrolytic manganese, followed by aluminum, the composition of inclusions changed from manganese silicate-rich inclusions to alumina-rich inclusions. After tapping and titanium wire feeding, pure TiN particles and complex inclusions with Al2O3-MgO-TiO x cores containing TiN were found to be the dominant inclusions when [pct Ti] was 0.307 mass pct in the molten steel. These findings were confirmed by thermodynamic calculations which indicated that there was a driving force for TiN inclusions to be formed in the liquid phase due to the high contents of [Ti] and [N] in the molten steel. From the start of casting through to the rolled bar, there was no further change in the composition of inclusions compared to the titanium addition stage. Stringer-shaped TiN inclusions were observed in the rolled bar. These inclusions were elongated along the rolling direction with lengths varying from 17 to 84 µm and could have a detrimental impact on the corrosion resistance as well as the mechanical properties of the stainless steel products.  相似文献   

10.
Evolution behaviors of inclusions of EH36 shipbuilding steel during 1473 K (1200 °C) heating have been studied in conjunction with ex situ scanning electron microscope (SEM) examination and in situ confocal scanning laser microscopy (CSLM) observations. It has been found that Al-Ca-O-S complex inclusions dominate the particles in the cast billet. However, TiN inclusions are profusely populated after heating. Moreover, possible strategies governing austenite growth are offered here.  相似文献   

11.
55SiCrA spring steel was smelted in a vacuum induction levitation furnace. The liquid steel was treated by Si deoxidation, Al modification with Ca treatment and Al modification, and the steel samples were obtained with deformable Al2O3-SiO2-CaO-MgO inclusions closely contacted with steel matrix, Al2O3-CaO-CaS-SiO2-MgO inclusions surrounded by small voids or Al2O3(> 80 pct)-SiO2-CaO-MgO inclusions surrounded by big voids, respectively. Effect of three types of inclusions on steel fatigue cracks was studied. The perpendicular and transverse fatigue cracks around the three types of inclusions leading to fracture were found to vary in behavior. Under the applied stress amplitude of 775 MPa, the fatigue lives of the three spring steels decreased from 4.0 × 107 to 3.8 × 107, and to 3.1 × 107 cycles. For the applied stress amplitude of 750 MPa, the fatigue lives of the three spring steels decreased from 5.2 × 107 to 4.1 × 107, and to 3.4 × 107 cycles. Based on the voids around inclusions, the equivalent size of initial fatigue crack has been newly defined as \( \sqrt {\frac{{{\text{area}}_{\text{inclusion}} }}{{(1 - {\text{CC}})}}} \), where the contraction coefficient CC of inclusion was introduced. A reliable forecast model of the critical size of inclusion leading to fracture was established by the incorporation of actual width binclusion or diameter dinclusion of internal inclusion; the model prediction was found to be in agreement with experimental results.  相似文献   

12.
The thermodynamics of carbon and oxygen solutions in manganese melts is studied. An equation for the temperature dependence of the activity coefficient of carbon in liquid manganese is obtained (γ C(Mn) 0 = ?1.5966 + (1.0735 × 10?3)T). The temperature dependence of the Gibbs energy of the reaction of carbon dissolved in liquid manganese with the oxygen of manganese oxide is shown to be described by the equation ΔG T 0 = 375264 ? 184.66T(J/mol). This reaction can noticeably be developed depending on the carbon content at temperatures of 1700–1800°C. The deoxidation ability of carbon in manganese melts is shown to be much lower than that in iron and nickel melts due to the higher affinity of manganese to both oxygen and carbon. Although the deoxidation ability of carbon in manganese melts increases with temperature, the process develops at rather high carbon contents in all cases.  相似文献   

13.
Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.  相似文献   

14.
Better understanding of agglomeration behavior of nonmetallic inclusions in the steelmaking process is important to control the cleanliness of the steel. In this work, a revision on the Paunov simplified model has been made according to the original Kralchevsky–Paunov model. Thus, this model has been applied to quantitatively calculate the attractive capillary force on inclusions agglomerating at the liquid steel/gas interface. Moreover, the agglomeration behavior of Al2O3 inclusions at a low carbon steel/Ar interface has been observed in situ by high-temperature confocal laser scanning microscopy (CLSM). The velocity and acceleration of inclusions and attractive forces between Al2O3 inclusions of various sizes were calculated based on the CLSM video. The results calculated using the revised model offered a reasonable fit with the present experimental data for different inclusion sizes. Moreover, a quantitative comparison was made between calculations using the equivalent radius of a circle and those using the effective radius. It was found that the calculated capillary force using equivalent radius offered a better fit with the present experimental data because of the inclusion characteristics. Comparing these results with other studies in the literature allowed the authors to conclude that when applied in capillary force calculations, the equivalent radius is more suitable for inclusions with large size and irregular shape, and the effective radius is more appropriate for inclusions with small size or a large shape factor. Using this model, the effect of inclusion size on attractive capillary force has been investigated, demonstrating that larger inclusions are more strongly attracted.  相似文献   

15.
Regularities of dissolution, phase formation, and structure formation during the interaction of double carbides (Ti1–n Me n IV, V )C with the Ni–25%Mo melt (t = 1450°C, τ = 1 h, vacuum 10–1 Pa) are investigated for the first time by electron probe microanalysis and scanning electron microscopy. The role of each alloying metal in the composition and microstructure formation of studied compositions is revealed. It is established that Group IV alloying metals (Zr and Hf) almost do not enter the composition of the forming K-phase (carbide Ti1–n Mo n C x ); therefore, its composition is independent of their concentration in double carbide. In contrast with zirconium and hafnium, Group V alloying metals (V and Nb) actively participate in the formation of the K-phase; however, the dependences of the composition of the K-phase and metallic matrix on the vanadium and niobium content are the opposite in this case. An interpretation of the causes of these distinctions is proposed.  相似文献   

16.
Solidification of Bi-4.5 wt pct Mn alloy was investigated in the presence and absence of a strong static magnetic field (SSMF). A cooling rate (R) of 60 K/min caused MnBi to orient with the SSMF, owing to the force moment and attractive force. The attractive force and magnetic gradient force induced formation of multilayered MnBi when R was 5 K/min. The magnetic gradient force was damped when R was 60 K/min. Low cooling rates favored the aggregation process.  相似文献   

17.
Liquid structural evolution of iron with various oxides was tracked from above liquidus to undercooling temperatures using an in situ high-energy X-ray diffraction method. The icosahedral-like orders and its enhancement with the decreasing temperature in all the liquids investigated suggest that icosahedral-like orders are not the sole reasons responsible for the variation of undercooling. The reduction of nearest-neighbor distance (r1) tuned by catalyzers contributes to the enhanced nucleation behavior of liquid iron.  相似文献   

18.
High-temperature experiments and Refractory-Slag-Metal-Inclusion (ReSMI) multiphase reaction simulations were carried out to determine the effect of the ladle slag composition on the formation behavior of non-metallic inclusions in molten steel. Immediately after the slag-metal reaction, magnesium migrated to the molten steel and a MgAl2O4 spinel inclusion was formed due to a reaction between magnesium and alumina inclusions. However, the spinel inclusion changed entirely into a liquid oxide inclusion via the transfer of calcium from slag to metal in the final stage of the reaction. Calcium transfer from slag to metal was more enhanced for lower SiO2 content in the slag. Consequently, the spinel inclusion was modified to form a liquid CaO-Al2O3-MgO-SiO2 inclusion, which is harmless under steelmaking conditions. The modification reaction was more efficient as the SiO2 content in the slag decreases.  相似文献   

19.
 通过扫描电镜-能谱仪检测和分析了不同铝钛脱氧顺序下钢中夹杂物的形貌、成分、尺寸、数量和分布等参数,通过热力学计算分析了脱氧过程中钢液中的化学反应和夹杂物优势区图。结果表明,脱氧剂添加顺序对夹杂物形貌影响很大,先加钛后加铝的脱氧方式下,钢液中形成了较多含有铁相(“空心”)的具有浓度梯度的铝钛复合夹杂物。夹杂物径向长度增加,夹杂物也更容易偏聚。所以先加钛后加铝不利于夹杂物尺寸细小化,不利于夹杂物弥散分布。先加铝后加钛的脱氧方式下,钢中形成氧化铝夹杂,不会被溶解的钛还原,因此夹杂物内部不含有铁相。夹杂物主要为Al-Ti-O(-N)类夹杂。夹杂物尺寸和数量小于先加钛后加铝钢中的夹杂物。通过FactSage计算结果、化学反应分析和试验检测结果,探究了不同铝钛脱氧顺序下夹杂物形成和演变机理,分析了具有浓度梯度的“空心结构”的铝钛复合夹杂物形成机理,讨论了脱氧剂添加顺序对夹杂物尺寸、数量和分布等特征的影响规律。发现先加钛后加铝的脱氧方式下,钛氧化物会与金属铝反应,钛氧化物逐渐转变为“空心”氧化铝壳,同时溶解的铝、钛和氧发生氧化反应,形成了具有浓度梯度的Al2O3-TiOx复合夹杂物,最终钛氧化物完全转变为氧化铝壳而消失。随着铁液的填充,形成了含有铁相的铝钛夹杂物。  相似文献   

20.
Attention focuses on the processes in the mold of a continuous-casting machine when using a patented new cooling system. In particular, the temperature differences in the steel billet and in the wall over the mold height are of interest in modeling the casting processes, because those differences affect the quality of the billet produced. A literature review covers research on the slag-forming mixture, which affects the heat flux from the billet to the mold. Non-Russian authors highlight mild cooling of the mold in selecting the slagforming mixture. Improvement of billet cooling in the mold permits improvement in the surface quality of the slab, extension of mold life, and increase in productivity. According to numerous authors, that may be accomplished by mathematical modeling of the process. The mold cooling depends directly on the convective motion of liquid steel in the mold, a topic addressed by many non-Russian authors. Researchers have considered systems in which the heat pipes in the cooling system of the mold are based on porous material, with water and air as the working fluid, and those in which liquid droplets on nanostructured superhydrophilic surfaces are evaporated. Mold cooling at steel casting rates higher than 7 m/min, accompanied by increase in the heat-flux density, is of great importance, as reflected by the number of studies published. The relations between the basic process parameters are determined by means of Rayleigh dimensionality theory. The basic parameter selected is the temperature difference in the metal mold wall, which depends on the casting rate (the time that the billet is in the mold), the properties of the steel (specific heat, thermal diffusivity), the thermal conductivity of the mold wall, and the temperature difference in the cast steel. In determining the exponents in the dimensionless relations, the available experimental data regarding the dependence of the heatflux density on the casting rate and the parameter of the steel are taken into account. On the basis of the ratio Δtme/tme obtained (where Δtme is the mean temperature difference over the wall thickness and tme is the mean wall temperature) for molds with the existing and new (patented) cooling systems, the temperature difference in the steel billet may be determined. For the two cooling systems compared, Δtme1 = 450°C and Δtme2 = 231°C. Consequently, Δtme1tme2 = 1.95. The smaller temperature difference Δtme2 indicates milder cooling of the mold with the new cooling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号