首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chang G  Barnard A  Zaneveld JR 《Applied optics》2007,46(31):7679-7692
An optical dataset was collected on a mooring in the Santa Barbara Channel. Radiative transfer modeling and statistical analyses were employed to investigate sources of variability of in situ remote sensing reflectance [r(rs)(lambda,4 m)] and the f/Q ratio. It was found that the variability of inherent optical properties and the slope of the particle size distribution (xi) were strongly related to the variability of r(rs)(lambda,4 m). The variability of f/Q was strongly affected by particle type characteristics. A semianalytical radiative transfer model was applied and effects of variable particle characteristics on optical closure were evaluated. Closure was best achieved in waters composed of a mixture of biogenic and minerogenic particles.  相似文献   

2.
In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.  相似文献   

3.
Haltrin VI 《Applied optics》1998,37(36):8336-8340
The influence of illumination by direct sunlight and the diffuse light of the sky on the apparent optical properties of seawater are studied. This study is based on the earlier self-consistent approach for solution of the radiative transfer equation. The resulting set of equations couples diffuse reflectance and diffuse attenuation coefficients and other apparent optical properties of the sea with inherent optical properties of seawater and parameters of illumination by the Sun and the sky. The resulting equations in their general form are valid for any possible values of absorption and backscattering coefficients.  相似文献   

4.
Elias M 《Applied optics》2011,50(16):2464-2473
The saturation and the lightness of hematite layers are quantitatively related to the size distribution of the pigments, when applied on skin or a perfect white substrate. The optical properties, reflectance spectra, and colorimetric coordinates are calculated from the complex refractive index of hematite and by use of the radiative transfer equation. Monodisperse pigments are investigated first and the maximum of saturation is calculated as a function of the pigment radius. Polydisperse pigments are then investigated with a log-normal size distribution. The maximum of saturation is then calculated as a function of the width of the pigment distribution, for different mean radii. This modeling can be extended to any mineral pigments.  相似文献   

5.
At high temperature, heat transfer in open-cell foams occurs by thermal radiation through the whole medium as well as by conduction through the solid matrix and air filling the pores. This paper applies the body-centered cubic cell model to predict radiative properties and the thermal conductivity of the open-cell foams. The model is validated by comparing the results with previous published works. Effects of structural characteristic parameters (cell diameter and porosity) and optical properties of the solid matrix (reflectivity and specularity parameter) on extinction coefficients and the radiative conductivity are discussed. The influence of temperature on the thermal conductivities including the effective, radiative, and the equivalent conductivity of open-cell ceramic foams are analyzed.  相似文献   

6.
Spectral and integrated radiative properties (reflection, transmission, and the rate of heating) of finegrained wind-packed snow typical of subpolar regions are studied through a model taking into account surface reflection and volumetric multiple scattering. The surface reflection is modeled by a bidirectional reflectance distribution function applicable to powdered dielectric material. For the volumetric multiple scattering, the radiative transfer equation designed for strongly asymmetric scattering is solved. All multiple scattering parameters (single scattering albedo, various moments of the scattering phase function, and optical depth) are related to measurable physical characteristics (density, grain size, and the absorption coefficient of pure ice).Parameterized atmospheric spectral transmission coefficients for scattering and absorption by aerosols and gases are used to obtain the direct and diffuse components of solar flux, incident on the snow-cover. Calculated values of spectral and integrated visible and near infrared reflection and flux attenuation coefficients of snow are compared with observations. The rate of radiative heating at different depths within the snowcover is calculated from the net flux divergence. It is shown that the conventional method of calculating this rate using measured bulk extinction coefficients grossly underestimates the amount of heating within the top few millimeters. This study provides a better overall understanding of the radiative properties of snow under clear sky conditions in terms of the physical characteristics of the snowcover.  相似文献   

7.
8.
Wang M  Gordon HR 《Applied optics》1995,34(30):6989-7001
We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors.  相似文献   

9.
Existing solar radiative codes such as lowtran allow us to model the radiative properties of the atmosphere and its constituents for standard atmospheric conditions. The increase in urbanization and air pollution has led to changes in the distribution, type, and concentration of the atmospheric constituents, affecting spectral atmospheric transmission and modifying weather and climate. This requires knowledge of the real optical properties of atmospheric transmission. We have developed a model for the radiative properties of atmospheric transmission, with ground-based multispectral measurements of direct solar radiation in the 310-830-nm range. An application of this model to Athens' urban atmosphere is described. The radiative properties of a U.S. Standard Atmosphere are also simulated by use of the lowtran 7 code; simulations and calculations are compared. The total ozone retrieval scheme and the algorithm for retrieving the spectral transmission function and optical thickness, considering multiple scattering, are given. Results for the spectral atmospheric transmission and aerosol and gas transmission functions as well as optical-thickness measurements for the Athens area are also presented as an application of the proposed methodology.  相似文献   

10.
Zhang K  Li W  Stamnes K  Eide H  Spurr R  Tsay SC 《Applied optics》2007,46(9):1525-1534
The Moderate Resolution Imaging Spectroradiometer aerosol algorithm over the ocean derives spectral aerosol optical depth and aerosol size parameters from satellite measured radiances at the top of the atmosphere (TOA). It is based on the adding of apparent optical properties (AOPs): TOA reflectance is approximated as a linear combination of reflectances resulting from a small particle mode and a large particle mode. The weighting parameter eta is defined as the fraction of the optical depth at 550 nm due to the small mode. The AOP approach is correct only in the single scattering limit. For a physically correct TOA reflectance simulation, we create linear combinations of the inherent optical properties (IOPs) of small and large particle modes, in which the weighting parameter f is defined as the fraction of the number density attributed to the small particle mode. We use these IOPs as inputs to an accurate multiple scattering radiative transfer model. We find that reflectance errors incurred with the AOP method are as high as 30% for an aerosol optical depth of 2 at 550 nm. The retrieved optical depth has a relative error of up to 8%, and the retrieved fraction eta has an absolute error of approximately 6%. We show that the use of accurate radiative transfer simulations and a bimodal fraction f yields accurate values for the retrieved optical depth and the fraction f.  相似文献   

11.
12.
For many technical and architectural applications of electrochromic glazings a thorough understanding of the heat transport and the optical and thermal radiative properties of the system is essential. Furthermore, the thermal expansion and eventually the induced stresses within the laminated system are of interest. To meet these demands the solar absorptance of the electrochromic glazings at different tinted states were measured using an UV–VIS-NIR spectrometer. The thermal expansion coefficients of the glass materials were determined by a push-rod dilatometer. Then the instationary coupled conductive and radiative heat transfer due to solar irradiation were calculated for various pane configurations by finite element analysis. Starting from the resulting instationary temperature fields, the stress and strain states within the laminated glazing system were calculated.  相似文献   

13.
The paper is devoted to the introduction of simple analytical relationships between statistical distributions of various radiative transfer characteristics for an inhomogeneous turbid layer with the extinction coefficient varying in the horizontal direction. Results are valid for an optically thick light-scattering layer having arbitrary local scattering laws and single-scattering albedos. It is shown that the statistical distribution of the optical thickness can be obtained directly from the measured statistical distribution of the reflectance or transmittance of a horizontally inhomogeneous light-scattering layer.  相似文献   

14.
A comparative analysis is presented of simple approaches to radiative transfer in plane-parallel layers, such as the self-consistent Haltrin approach, the Chandrasekhar-Klier exact solution for isotropic scatters, an extended version of two-flux radiative Kubelka-Munk theory, the neutron-diffuse Gate-Brinkworth theory, and different versions of the delta-Eddington theory. It is shown that the Haltrin approach is preferable to others and can be used for the solution of an inverse optical problem of the estimation of absorption and backscattering coefficients of aquatic environments from measured apparent optical properties. Two different methods of transformation from measured irradiance reflectance at combined illumination to irradiance reflectance induced by diffuse illumination only are developed. An analysis of the use of the different models for estimation of the effect of the bottom albedo is also presented.  相似文献   

15.
A volume integral equation method (VIEM) is used to calculate the elastostatic field in an isotropic elastic half-plane containing circular inclusions subject to remote loading parallel to the traction-free boundary. The material of the inclusions may be either isotropic or anisotropic and they are assumed to be distributed in square or hexagonal array. A detailed analysis of the stress field at the interface between the matrix and one of the inclusions is carried out for different distances between the inclusion and the surface of the half-plane. The results of the calculations are compared with available results. The VIEM is shown to be very accurate and effective for investigating the local stresses in the presence of multiple inclusions. The method can be applied to multiple inclusions of arbitrary geometry and elastic properties embedded in extended isotropic elastic media.  相似文献   

16.
We propose the physically based parameterization of the radiative characteristics of liquid-water clouds as functions of the wavelength, effective radius, and refractive index of particles, liquid-water path, ground albedo, and solar and observation angles. The formulas obtained are based on the approximate analytical solutions of the radiative transfer equation for optically thick, weakly absorbing layers and the geometrical optics approximation for local optical characteristics of cloud media. The accuracy of the approximate formulas was studied with an exact radiative transfer code. The relative error of the approximate formula for the reflection function at nadir observations was less then 15% for an optical thickness larger than 10 and a single-scattering albedo larger than 0.95.  相似文献   

17.
Two new extension modules that give the water-leaving radiance from the ocean and the snow bidirectional reflectance distribution function were implemented in the latest radiative transfer code. In addition, to simulate the near-global distributions of satellite-measured radiances by using the improved radiative transfer code, we tested and applied the look-up table method together with the process-separation technique of the radiative transfer calculation. The computing time was reduced from 1 year to 20 s to simulate one channel, one scene of the Global Imager image by use of an Alpha 21164A-2 (600-MHz) machine. The error analyses showed that the radiances were simulated with less than 1% error for the nonabsorbing visible channels and approximately 2% error for absorbing channels by use of this method.  相似文献   

18.
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.  相似文献   

19.
Hansell RA  Tsay SC  Ji Q  Liou KN  Ou SC 《Applied optics》2003,42(27):5533-5544
An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multiple-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sunphotometer data for two SAFARI-2000 dates. The observed aerosol radiative forcings were interpreted on the basis of results from the Fu-Liou radiative transfer model, and, in some cases, cross checked with satellite-derived forcing parameters. Values of the aerosol radiative forcing and forcing efficiency, which quantifies the sensitivity of the surface fluxes to the aerosol optical depth, were generated on the basis of a differential technique for all three campaigns, and their scientific significance is discussed.  相似文献   

20.
Thermal barrier coatings are generally designed to possess very low thermal conductivity to reduce the conduction heat transfer from the coating surface to the metal turbine blade beneath the coating. In high-temperature power generation systems, however, a considerable amount of radiative heat is produced during the combustion of fuels. This radiative heat can propagate through the coating and heat up the metal blade, and thereby reduce the effectiveness of the coating in lowering the thermal load on the blade. Therefore, radiative properties are essential parameters to design radiative barrier coatings. This article presents a combined radiation and conduction heat transfer model for the steady-state temperature distribution in semitransparent yttria-stabilized zirconia (YSZ) coatings. The results of the model show a temperature reduction up to 45 K for YSZ of high reflectance (80%) compared to the YSZ of low reflectance (20%). The reflectivities of YSZ and metal blade affect the temperature distribution significantly. Additionally, the absorption and scattering coefficients of YSZ, the thickness of the coating, and the thermal conductivities of YSZ and metal blade affect the temperature distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号