首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The chemical diffusion coefficient of sulfur in the ternary slag of composition 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was measured at 1680 K, 1700 K, and 1723 K (1403 °C, 1427 °C, and 1450 °C) using the experimental method proposed earlier by the authors. The P\textS2 P_{{{\text{S}}_{2} }} and P\textO2 P_{{{\text{O}}_{2} }} pressures were calculated from the Gibbs energy of the equilibrium reaction between CaO in the slag and solid CaS. The density of the slag was obtained from earlier experiments. Initially, the order of magnitude for the diffusion coefficient was taken from the works of Saito and Kawai but later was modified so that the concentration curve for sulfur obtained from the program was in good fit with the experimental results. The diffusion coefficient of sulfur in 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was estimated to be in the range 3.98 to 4.14 × 10−6 cm2/s for the temperature range 1680 K to 1723 K (1403 °C to 1450 °C), which is in good agreement with the results available in literature  相似文献   

3.
The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.  相似文献   

4.
5.
The distribution of arsenic between calcium ferrite slag and liquid silver (wt pct As in slag/ wt pct As in liquid silver) with 22 wt pct CaO and between iron silicate slag with 24 wt pct SiO2 and calcium iron silicate slags was measured at 1573 K (1300 °C) under a controlled CO-CO2-Ar atmosphere. For the calcium ferrite slags, a broad range of oxygen partial pressure (10–11 to 0.21 atm) was covered, whereas for the silicate slags, the oxygen partial pressure was varied from 10–9 to 3.1 × 10–7 atm. The measured relations between the distribution ratio of As and the oxygen partial pressure indicates that the oxidation state of arsenic in these slags is predominantly As3+ or AsO1.5. The measured distribution ratio of arsenic between the calcium ferrite slag and the liquid silver was about an order of magnitude higher than that of the iron silicate slag. In addition, an increasing concentration of SiO2 in the calcium-ferrite-based melts resulted in decreases in the distribution of arsenic into the slag. Through the use of measured equilibrium data on the arsenic content of the metal and slag in conjunction with the composition dependent on the activity of arsenic in the metal, the activity of AsO1.5 in the slags was deduced. These activity data on AsO1.5 show a negative deviation from the ideal behavior in these slags.  相似文献   

6.
This work was devoted to the kinetics studies of the oxidation of divalent iron in liquid FeO-CaO-SiO2 slags to the trivalent state. The experiments were carried out using a thermogravimetric technique (TGA) in the temperature range of 1623 K to 1773 K (1350 °C to 1500 °C) in an oxidizing atmosphere. The reaction products after oxidation were analyzed by X-ray diffraction and optical and scanning electron microscopy. The results obtained show that during the first 10 to 15 minutes of oxidation, 70 to 90 pct of the Fe2+ in the slag was oxidized. Kinetic analysis of the TGA results indicates that the oxidation process may consist of three distinct steps, viz an initial incubation period, followed by a chemical-reaction-controlled stage, and later, a diffusion-control stage. Appropriate mathematical relationships were set up for the first two consecutive steps. After combining these equations suitably as the mechanism of oxidation shifts from one form to another, the experimental results for the first two parts could be reproduced. A linear correlation was found between the thermodynamic activity of FeO in the slag and the degree of oxidation.  相似文献   

7.
The reduction rate of SiO2 from CaO-SiO2-Al2O3 and CaO-SiO2-Al2O3-TiO2 slags by carbon-saturated iron melts was investigated over the temperature range 1350 °C to 1600 °C under an argon atmosphere. It was found that the reduction rate of silicon increased with in-creasing temperature and decreased with increasing ratio of CaO/SiO2 in these slags. A kinetic analysis of the experimental results developed on the basis of the two film theory showed that the silicon transport rate from slag to metal phase was controlled by the rate of chemical reaction at the slag-metal interface. The rate constants obtained for the reaction were 10 g m-2 s-1 at 1550 °C. The apparent activation energy was 238.0 kJ mol-1.  相似文献   

8.
9.
To derive a correlation between sulfide and chloride capacities through our own systematic experimental studies by using a gas equilibrium technique involving Ar-H2-H2O-HCl gas mixtures, the solubilities of chlorine were determined for CaO-SiO2-MgO-Al2O3 slags at temperatures between 1673 K and 1823 K (1400 °C and 1550 °C). As a formula to correlate sulfide and chloride capacities, the following equation that is the function of temperature only was obtainable;
2logC\textCl - logC\textS = - 64.4 + \frac82,890T(\textK) ±0.75 2\log C_{\text{Cl}} - \log C_{\text{S}} = - 64.4 + {\frac{82,890}{{T({\text{K}})}}} \pm 0.75  相似文献   

10.
Measurements of the rate of interfacial reaction between CO2-CO mixtures and CaO-SiO2-FeOx slags have been made using the 13CO2-CO isotope exchange technique. Ranges of slag compositions from 0 to 100 wt pct ‘FeO’ and CaO/SiO2 between 0.3 and 2.0 were examined in the experiments. For each slag, the dependence of the apparent rate constant on temperature and equilibrium oxygen potential was studied. The relationship between the rate constant and oxygen potential was found to be in the form k a=k a o (ao). The parameter a, with values between 0.5 and 0.9, was dependent on the slag composition. The activation energy of the reaction was independent of iron oxide content and dependent on slag basicity.  相似文献   

11.
12.
Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete \textSiO44 - {\text{SiO}}_{4}^{4 - } tetrahedral units in the silicate melt would exist along with O2– ions. The change in melt expansivity may be attributed to the ionic expansions in the order of
\textAl 3+ - \textO 2- < \textCa 2+ - \textO 2- < \textCa 2+ - \textO - {\text{Al}}^{ 3+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ - }  相似文献   

13.
Kinetics of the reaction of lead slags (PbO-CaO-SiO2-FeO x -MgO) with CO-CO2 gas mixtures was studied by monitoring the changes in the slag composition when a stream of CO-CO2 gas mixture was blown on the surface of thin layers of slags (3 to 10 mm) at temperatures in the range of 1453 K to 1593 K (1180 °C to 1320 °C). These measurements were carried out under conditions where mass transfer in the gas phase was not the rate-limiting step and the reduction rates were insensitive to factors affecting mass transfer in the slag phase. The results show simultaneous reduction of PbO and Fe2O3 in the slag. The measured specific rate of oxygen removal from the melts varied from about 1 × 10?6 to 4 × 10?5 mol O cm?2 s?1 and was strongly dependent on the slag chemistry and its oxidation state, partial pressure of CO in the reaction gas mixture, and temperature. The deduced apparent first-order rate constant increased with increasing iron oxide content, oxidation state of the slag, and temperature. The results indicate that under the employed experimental conditions, the rate of formation of CO2 at the gas-slag interface is likely to be the rate-limiting step.  相似文献   

14.
To understand the desulfurization process during the refining of Cr-containing steel grades, this work was initiated to study the reactions between Cr-sulfur and chromium-containing slags. The sulfide capacities of CaO-SiO2-CrOx pseudo-ternary slags were measured using the traditional gas-slag equilibration technique between 1823 K and 1923 K. Sixteen different slag compositions were examined, and two different equilibrium oxygen partial pressures were used to understand the impact of the varying valence of Cr on the sulfide capacities. The results showed that log10 Cs varied linearly with the reciprocal T, and the slope was higher than the corresponding value reported for the binary CaO-SiO2 of corresponding composition. It was difficult to isolate the relative effects of the bi- and trivalent Cr in the slags because the Cr2+/Cr3+ ratio was influenced by the basicity of the slag. By using the equation developed by these authors earlier that related Cr2+/Cr3+ with basicity, oxygen partial pressure, and temperature, it was possible to obtain an approximate trend of the CrO effect on the sulfide capacities; viz. the sulfide shows a decreasing trend as Cr2+ replaces Ca2+ in the slag. With a continued increase of Cr2+ content, indications of the occurrence of a minimum point were observed; beyond which the sulfide capacities showed a slight increasing trend. The latter was attributed, based on slag-structure analysis by Gaskell et al., to the increasing extent of the polymerization reaction releasing oxygen ions for sulfide reactions.  相似文献   

15.
16.
The activities of MnO and MnS in a MnO-SiO2-Al2O3(or AlO1.5)-MnS liquid oxysulfide solution were investigated by employing the gas/liquid/Pt-Mn alloy chemical equilibration technique under a controlled atmosphere at 1773 K (1500 °C). Also, the sulfide capacity, defined as C S = (wt pct S)(pO2/pS2)1/2, in MnO-SiO2-Al2O3 slag with a dilute MnS concentration was obtained from the measured experimental data. As X SiO2/(X MnO + X SiO2) in liquid oxysulfide increases, the activity coefficient of MnO decreases, while that of MnS first increases and then decreases. As X(AlO1.5) in liquid oxysulfide increases, the activity coefficient of MnS increases, while no remarkable change is observed for the activity coefficient of MnO. The behavior of the activity coefficient of MnS was qualitatively analyzed by considering MnO + A x S y (SiS2 or Al2S3) = MnS + A x O y (SiO2 or Al2O3) reciprocal exchange reactions in the oxysulfide solution. The behavior was shown to be consistent with phase diagram data, namely, the MnS saturation boundary. Quantitative analysis of the activity coefficient of the oxysulfide solution was also carried out by employing the modified quasichemical model in the quadruplet approximation.  相似文献   

17.
18.
The dissolution rate of calcium aluminate inclusions in CaO-SiO2-Al2O3 slags has been studied using confocal scanning laser microscopy (CSLM) at elevated temperatures: 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C). The inclusion particles used in this experimental work were produced in our laboratory and their production technique is explained in detail. Even though the particles had irregular shapes, there was no rotation observed. Further, the total dissolution time decreased with increasing temperature and decreasing SiO2 content in the slag. The rate limiting steps are discussed in terms of shrinking core models and diffusion into a stagnant fluid model. It is shown that the rate limiting step for dissolution is mass transfer in the slag at 1823 K and 1873 K (1550 °C and 1600 °C). Further investigations are required to determine the dissolution mechanism at 1773 K (1500 °C). The calculated diffusion coefficients were inversely proportional to the slag viscosity and the obtained values for the systems studied ranged between 5.64 × 10?12 and 5.8 × 10?10 m2/s.  相似文献   

19.
Alloys of the rare earths R (including La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Y, Ho, Er) with platinum, having the composition R3Pt4, have been synthesized and investigated by X-ray diffraction (XRD) and differential thermal analysis (DTA). At temperatures above about 900 °C and below 250 °C, all the single phases R3Pt4 are formed, which crystallize with the same structure of the rhombohedral Pu3Pd4 type. Over the temperature range of about 250 °C to 900 °C, they occur at an eutectoid decomposition into RPt and RPt2 compounds neighboring in the corresponding phase diagram, R3Pt4 → RPt + RPt2. The stability of these phases R3Pt4 may be restricted to a radius ratio r R/r Pt range of 1.27 to 1.35.  相似文献   

20.
The distribution ratio of nickel between Ag-Ni alloy and CaO-SiO2-Fe t O slag at high temperatures was measured to clarify the dissolution mechanism of nickel in this melt. Also, the nickel oxide capacity was suggested and was compared to phosphate and sulfide capacities. The dissolution mechanism of nickel into the CaO-SiO2-Fe t O slags could be described by the following equation from the effect of oxygen potential and slag basicity on nickel dissolution behavior:
The nickel oxide capacity increases with increasing CaO/SiO2 ratio at a fixed Fe t O content. When the ratio of X CaO to (C/S) is about 1.1 to 1.3, log increases with increasing Fe t O content up to about 35 mol pct, followed by a nearly constant value of . In the composition of C/S=0.5 to 0.7, log exhibits a maximum value at about 50 mol pct Fe t O. From the iso- trends in ternary phase diagram, nickel oxide capacity dominantly depends on Fe t O content in slags; it exhibits a maximum value of at . The relationship between nickel oxide capacity and phosphate (sulfide) capacities exhibit linear correlations, as expected from theoretical equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号